Volkswagen EGon Is A Rolling Electric Car Circuit Sculpture

Over the past few decades of evolution, cars have grown to incorporate a mind-boggling number of electric components. From parking distance sensors, to the convenience of power locks and windows, to in-car entertainment systems rivaling home theaters. Normally this interconnected system’s complexity is hidden between exterior sheet metal and interior plastic trim, but a group of students of Volkswagen’s vocational training program decided to show off their internal beauty by building the Volkswagen eGon exhibit.

Seeing a super minimalist Volkswagen electric Golf on the move (short Twitter video embedded below) we are immediately reminded of circuit sculptures. We saw some great projects in our circuit sculpture contest, but the eGon shows what can be done with the resources of a Volkswagen training center. Parts are bolted to the car’s original structure where possible, the rest were held in their representative positions by thin metal tube frames. At this scale, they look just like the brass rods used in small circuit sculptures! Certain component enclosures were replaced with transparent pieces, or had a window cut into them for visibility.

This exhibit was built for IdeenExpo, an event to expose students to science and technology. Showing them what’s under the cover in this “see-through car” with internal components tagged with QR codes pointing them to additional information. The number of electronic modules inside a car is only going to continue rising with the coming wave of electric and/or self-driving cars. Even if the timing of their arrival is debatable, we know we’ll need brain power helping to answer questions we don’t even know to ask yet. The eGon is doing a great job attracting attention and inviting bright young minds to participate.

Continue reading “Volkswagen EGon Is A Rolling Electric Car Circuit Sculpture”

Charging An Electric Supercar With Lemons, Kids, And The Sun

First things first: the tease on this video, that an electric supercar can be charged from a massive lemon battery array, is exactly that – a tease. Despite that, it makes for an interesting story and a great attempt to get kids exposed to science and engineering.

The story goes that [Mark] was approached by Volkswagen to help charge the batteries on their entry for the upcoming Pikes Peak International Hill Climb, the annual “Race to the Clouds” in Colorado. Racers are tortured by a 4,700′ (1,440 m) vertical climb over a 12.42 mile (20 km) course that features 156 switchback turns. Volkswagen’s entry is an electric supercar, and they sent [Mark] a portable battery cart to charge up the best way he saw fit.

Teaming up with [William Osman], the first attempt was a massive array of lemon cells, made with waterjet-cut strips of zinc and copper held in a plywood frame. Studded with 1,232 lemons, the battery performed just about as well as you’d expect it would. Plan B was cute, and another of [Mark]’s attempts to pad his “Funnest Uncle Ever” score a bit. He devised a zip line with regenerative braking to charge a cordless drill battery, and then indirectly harvested the energy in the battery by turning it into lemonade for a bunch of kids. The sugared-up kids rode the zip line till the battery was charged.

That was still a drop in the bucket, though, so Plan C saw [Mark] install a large solar array on his roof; the tie-in here was that the lemon-powered kids got to design a cleaning system for the solar array. A weak link, to be sure, but the kids had fun, and we can’t deny that the car will at least be partially lemon-powered when it heads up the hill.

Continue reading “Charging An Electric Supercar With Lemons, Kids, And The Sun”

Audi Engineer Exposes Cheat Order

In an interesting turn of events last week in a German court, evidence has materialized that engineers were ordered to cheat emissions testing when developing automotive parts.

Last Tuesday, Ulrich Weiß brought forward a document that alleges Audi Board of Director members were involved in ordering a cheat for diesel emissions. Weiß was the head of engine development for Audi, suspended in November of 2015 but continued to draw more than half a million dollars in salary before being fired after prior to last week’s court testimony.

Volkswagen Group is the parent company of Audi and this all seems to have happened while the VW diesel emissions testing scandal we’ve covered since 2015 was beginning to come to light. Weiß testified that he was asked to design a method of getting around strict emissions standards in Hong Kong even though Audi knew their diesel engines weren’t capable of doing so legitimately.

According to Weiß, he asked for a signed order. When he received that order he instructed his team to resist following it. We have not seen a copy of the letter, but the German tabloid newspaper Bild reports that the letter claims approval by four Audi board members and was signed by the head of powertrain development at the company.

Hackaday was unable to locate any other sources reporting on the letter other than the Bild article we have linked to (also the source used in the Forbes article above). Sources such as Die Welt reference only “internal papers”. If you know of other reporting on the topic please leave a comment about it below.

 

VW Engineer Pleads Guilty To Conspiracy

[James Liang], an engineer at Volkswagen for 33 years, plead guilty today to conspiracy. He was an engineer involved in delivering Diesel vehicles to market which could detect an emissions test scenario and perform differently from normal operation in order to pass US emission standards.

A year ago we talked about the Ethics in Engineering surrounding this issue. At the time we wondered why any engineer would go along with a plan to defraud customers. We may get an answer to this after all. [Mr. Liang] will cooperate with authorities as the VW probe continues.

According to information in the indictment, none of this happened by mistake (as we suspected). There was a team responsible for developing a mode that would detect a test and pass inspection after the company discovered the engine could not otherwise pass. It’s not hard to see the motivation behind this — think of the sunk cost in developing an engine design. The team responsible for cheating the tests went so far as to push software updates in 2014 which made the cheat better, and lying about the existence of these software “features” when questioned by authorities (again, according to the indictment).

Arduino + Software Defined Radio = Millions Of Vulnerable Volkswagens

As we’ve mentioned previously, the integrity of your vehicle in an era where even your car can have a data connection could be a dubious bet at best. Speaking to these concerns, a soon-to-be published paper (PDF) out of the University of Birmingham in the UK, states that virtually every Volkswagen sold since 1995 can be hacked and unlocked by cloning the vehicle’s keyfob via an Arduino and software defined radio (SDR).

The research team, led by [Flavio Garcia], have described two main vulnerabilities: the first requires combining a cyrptographic key from the vehicle with the signal from the owner’s fob to grant access, while the second takes advantage of the virtually ancient HiTag2 security system that was implemented in the 1990s. The former affects up to 100 million vehicles across the Volkswagen line, while the latter will work on models from Citroen, Peugeot, Opel, Nissan, Alfa Romero, Fiat, Mitsubishi and Ford.

Continue reading “Arduino + Software Defined Radio = Millions Of Vulnerable Volkswagens”

Custom Engine Parts From A Backyard Foundry

Building a car engine can be a labor of love. Making everything perfect in terms of both performance and appearance is part engineering and part artistry. Setting your creation apart from the crowd is important, and what better way to make it your own than by casting your own parts from old beer cans?

[kingkongslie] has been collecting parts for a dune buggy build, apparently using the classic VW Beetle platform as a starting point. The air-cooled engine of a Bug likes to breathe, so [kingkongslie] decided to sand-cast a custom crankcase breather from aluminum.

Casting solid parts is a neat trick but hardly new; we’ve covered the techniques for casting plastic, pewter, and even soap. The complexity of this project comes from the fact that the part needs to be hollow. [kingkongslie] managed this with a core made of play sand and sodium silicate from radiator stop-leak solution hardened with a shot of carbon dioxide. Sure, it looks like a Rice Krispie treat, but a core like that will stand up to the molten aluminum while becoming weak enough to easily remove later. The whole complex mold was assembled, beer cans melted in an impromptu charcoal and hair-dryer foundry, and after one false start, a shiny new custom part emerged from the sand.

We’ve got to hand it to [kingkongslie] – this was a nice piece of work that resulted in a great looking part. But what we love about this is not only all the cool casting techniques that were demonstrated but also the minimalist approach to everything. We can all do stuff like this, and we probably should.

Continue reading “Custom Engine Parts From A Backyard Foundry”

Volkswagen Beetle – The Most Hackable Car

If you build a better mousetrap, the world will beat a path to your door. Of course it helps if your mousetrap is reliable, simple, cheap, and easy to work on. In the car world, look no further than arguably the most successful, and most hackable, car in history: the Volkswagen Type 1, more commonly known as the Beetle. The ways in which this car was modified to suit the needs of a wide range of people over its 65-year-long production run proves that great design, ease of use, and simplicity are the keys to success, regardless of the project or product.

Built by Ferdinand Porsche in 1930’s Germany, the Beetle was designed to be a car for anyone and everyone. Its leader at the time wanted a true “people’s car” (i.e. “Volkswagen”) that was affordable for a German family, could reliably travel at sustained highway speeds on the new German autobahns, and easily be repaired by its owners. The car features an air-cooled engine for simplicity and cost savings: no radiator, water pump, or coolant, plus reduced overall complexity. The engine can be easily removed by disconnecting the fuel line, the throttle cable, and the four bolts that hold it to the transaxle. The entire body is held on to the chassis by eighteen bolts and is also easy to remove by today’s standards. There’s no air conditioning, no power steering, and a rudimentary heater of sorts for the passenger cabin that blows more hot air depending on how fast the engine is running. But possibly the best example of its simplicity is the fact that the windshield washer mechanism is pressurised with air from the over-inflated spare tire, eliminating the need to install another piece of equipment in the car.

It’s not too big of a leap to realize how easily hackable this car is. Even Volkswagen realized this and used the platform to build a number of other vehicles: the Type 2 (otherwise known as the bus, van, hippie van, Kombi, etc.) the eclectic Karmann Ghia, and the Types 3 and 4. Parts of the Type 1 were used to build the Volkswagen 181, commonly referred to as “the Thing”. Ferdinand Porsche also used design elements and other parts of the Type 1 to build the first Porsche, essentially making a souped-up Beetle. The rear-engine, rear-wheel drive layout of modern Porsches is a relic of this distant Beetle cousin. But the real magic is what people started doing to the Beetles in their backyards in the ’60s and 70s: turning them into buggies, off road machines, race cars, and hot rods that are still used today.

At some point around this time, a few people realized that the Beetle was uniquely suited to off-road racing. The type of suspension combined with the rear-engine, rear-wheel-drive layout meant that even without four-wheel drive, this car could excel in desert racing. There are still classes in this race for stock Beetles and modified Beetles called Baja Bugs.

Continue reading “Volkswagen Beetle – The Most Hackable Car”