Disposable Vape Batteries Power EBike

There are a lot of things that get landfilled that have some marginal value, but generally if there’s not a huge amount of money to be made recycling things they won’t get recycled. It might not be surprising to most that this is true of almost all plastic, a substantial portion of glass, and even a lot of paper and metals, but what might come as a shock is that plenty of rechargeable lithium batteries are included in this list as well. It’s cheaper to build lithium batteries into one-time-use items like disposable vape pens and just throw them out after one (or less than one) charge cycle, but if you have some spare time these batteries are plenty useful.

[Chris Doel] found over a hundred disposable vape pens after a local music festival and collected them all to build into a battery powerful enough for an ebike. Granted, this involves a lot of work disassembling each vape which is full of some fairly toxic compounds and which also generally tend to have some sensitive electronics, but once each pen was disassembled the real work of building a battery gets going. He starts with testing each cell and charging them to the same voltage, grouping cells with similar internal resistances. From there he assembles them into a 48V pack with a battery management system and custom 3D printed cell holders to accommodate the wide range of cell sizes. A 3D printed enclosure with charge/discharge ports, a power switch, and a status display round out the build.

With the battery bank completed he straps it to his existing ebike and hits the trails, easily traveling 20 miles with barely any pedal input. These cells are only rated for 300 charge-discharge cycles which is on par for plenty of similar 18650 cells, making this an impressive build for essentially free materials minus the costs of filament, a few parts, and the sweat equity that went into sourcing the cells. If you want to take an ebike to the next level of low-cost, we’d recommend pairing this battery with the drivetrain from the Spin Cycle.

Thanks to [Anton] for the tip!

A black plastic trim piece from a vehicle interior. It has slight flecking in its texture. It is sitting on an off-white bench overlooking a workshop.

Can Car Parts Grow On Trees?

Cars don’t grow on trees, but Ford is designing car parts from olive tree cuttings. [via Electrek]

Ford is no stranger to designing parts from plants for their vehicles. Henry famously liked to beat on the Soy Bean Car with a blunted axe to tout the benefits of bioplastic panels. Researchers at Ford’s Cologne, Germany facility have detailed their work to use waste from olive orchards as part of a new biocomposite from the LIVE COMPOLIVE program.

Fibers from the olive tree cuttings are mixed with recycled plastic and injection molded to form panels. The video below features interior panels that are currently made with traditional plastics that could be swapped over to the new composite. Since these cuttings are a waste product from food production, there isn’t the tension akin to that presented via biofuels vs food. We’re curious what Precious Plastics could do with this, especially if the fibers are able to reinforce the matrix.

If you want to see some other unusual uses for waste wood, why not checkout a “paper” bottle or 3D printing with sawdust?

Continue reading “Can Car Parts Grow On Trees?”

Reducing Poop On Multicolor Prints

While multicolor printing eliminates painting steps and produces vibrant objects, there are two significant downsides; filament consumption and print time. A single-nozzle filament printer needs to switch from one color to another, and doing so involves switching to the other filament and then purging the transition filament that contains a mixture of both colors, before resuming the print with the clean new color.

[teachingtech] tests out a variety of methods for reducing print time and waste. One surprising result was that purging into the infill didn’t result in significant savings, even when the infill was as high as 50%. Things that did have a positive effect included reducing the amount of purge per transition based on light to dark color changes, and printing multiple copies at once so that even though the total amount of waste was the same as a single part, the waste per part was reduced.

All of the tests were with the same model, which had 229 color changes within a small part, so your mileage may vary, but it’s an interesting investigation into some of the deeper settings within the slicer. Reducing filament waste and print time is an admirable goal, and if you make your own extruder, you can turn all of that purge waste into various shades of greenish brownish filament. Continue reading “Reducing Poop On Multicolor Prints”

Lessons In Printer Poop Recycling

The fundamental problem with multi-color 3D printing using a single hotend is that they poop an awful lot. Every time they change filaments, they’ve got to purge the single nozzle, which results in a huge number of technicolor “purge poops” which on some machines are even ejected out a chute at the back of the printer. The jokes practically write themselves.

What’s not a joke, though, is the sheer mass of plastic waste this can produce. [Stefan] from CNC Kitchen managed to generate over a kilo of printer poop for a 500-gram multi-color print. So he set about looking for ways to turn printer poops back into filament, with interesting results. The tests are based around a commercial lab-scale filament extruder, a 3Devo Composer, but should apply to almost any filament extruder, even the homebrew ones. A few process tips quickly became evident. First, purge poops are too big and stringy (ick) to feed directly into a filament extruder, so shredding was necessary.

Second, everything needs to be very clean — no cross-contamination with plastics other than PLA, no metal bits in the chopped-up plastic bits, and most importantly, no water contamination. [Stefan]’s first batch of recycled filament came from purge poops that had been sitting around a while, and sucked a lot of water vapor from the air. A treatment in a heated vacuum chamber seems to help, but what worked best was using purge poops hot and fresh from a print run. Again, ick.

[Stefan] eventually got a process down that produced decent, usable filament that would jam the printer or result in poor print quality. It even had a pretty nice color, which of course is totally dependent on the mix of colors you start with. Granted, not everyone has access to a fancy filament extruder like his, so this may not be practical for everyone, but it at least shows that there’s a path to reducing the waste stream from any printer, especially multi-material ones.

Continue reading “Lessons In Printer Poop Recycling”

No Fish Left Behind

For hundreds of years, Icelanders have relied on the ocean for survival. This is perhaps not surprising as it’s an isolated island surrounded by ocean near the Arctic circle. But as the oceans warm and fisheries continue to be harvested unsustainably, Iceland has been looking for a way to make sure that the fish they do catch are put to the fullest use, for obvious things like food and for plenty of other novel uses as well as they work towards using 100% of their catch.

After harvesting fish for food, most amateur fishers will discard around 60% of the fish by weight. Some might use a portion of this waste for fertilizer in a garden, but otherwise it is simply thrown out. But as the 100% Fish Project is learning, there are plenty of uses for these parts of the fish as well. Famously, cod skin has been recently found to work as skin grafts for humans, while the skin from salmon has been made into a leather-type product and the shells of crustaceans like shrimp can be made into medicine. The heads and bones of fish can be dried and made into soups, and other parts of fish can be turned into things like Omega-3 capsules and dog treats.

While we don’t often feature biology-related hacks like this, out-of-the-box thinking like this is an important way to continue to challenge old ideas, leave less of a footprint, improve human lives, and potentially create a profitable enterprise on top of all of that. You might even find that life in the seas can be used for things you never thought possible before, like building logic gates out of crabs.

Thanks to [Ben] for the tip!

There’s Cash In Them Old Solar Panels

The first solar panels may have rolled out of Bell Labs in the 1950s, with major press around their inconsistent and patchy adoption in the decades that followed, but despite the fanfare they were not been able to compete on a price per kilowatt compared to other methods of power generation until much more recently. Since then the amount of solar farms has increased exponentially, and while generating energy from the sun is much cleaner than most other methods of energy production and contributes no greenhouse gasses in the process there are some concerns with disposal of solar panels as they reach the end of their 30-year lifespan. Some companies are planning on making money on recycling these old modules rather than letting them be landfilled. Continue reading “There’s Cash In Them Old Solar Panels”

Australia’s Soft Plastic Recycling Debacle

We’ve all been told to cut back on waste to help prevent environmental crisis on Earth. Reducing waste helps reduce the need to spend time and energy digging up fresh materials, and helps reduce the amount of trash we have to go out and bury in the ground in landfills. Recycling is a big part of this drive, allowing us to divert waste by reprocessing it into fresh new materials.

Sadly, though, recycling isn’t always as magical as it seems. As Australia has just found out, it’s harder than it sounds, and often smoke and mirrors prevent the public from understanding what’s really going on. Here’s how soft plastic recycling went wrong Down Under.

Continue reading “Australia’s Soft Plastic Recycling Debacle”