A Water Activated Flashlight?

Water powered flash light

We’ve all seen lemon batteries or potato clocks, but have you ever seen a water activated battery?

[Nathan Stubblefield] was an American inventor (born 1860) who never got quite as much recognition as some of the other great inventors of the time, [Tesla, Bell, Edison etc] — though he did demonstrate some very interesting wireless telephony technology. In addition to dabbling with invisible radio waves, [Stubblefield] filed a patent for something called an Earth Battery, which makes use of two coils of dissimilar materials (a voltaic couple) submerged in water (or moist earth). As you can imagine, it wasn’t overly effective, nor efficient by any means — but it worked.

[Lasersaber] has been playing around with the “Stubblefield Coil” recently, and designed a working flashlight using the theory. He designed a 3D printed coil holder which allows you to easily wrap copper and magnesium strips around it to create the coil. Three of these cells go together in series to produce your water battery (and handle of the flashlight).

[Read more...]

A Professional Spot Welder Made out of a Microwave Transformer

MOT Spot Welder

Spot welders are one of the very few pieces of metal working equipment that are actually very much cheaper to build yourself than to buy commercially. In fact, between salvaging a transformer out of an old microwave and buying some of the other components, it’s doable for under $100USD in most cases.

We’ve shared this hack quite a few times before, but [Albert van Dalen] has really taken the cake on creating a very detailed and extensive guide to not only building his, but how to properly use it for various purposes.

[Albert] designed it in a way that allows it to be configured in both opposed and series electrode positions which means besides being able to spot weld sheet metal together, you can also spot weld battery tabs while on cells!

[Read more...]

Auto-Balancing Gimbal Keeps your Coffee from Spilling

Using a Gimbal to Balance Your Coffee

[Joe] works in one of those fancy offices that has some… unique furniture. Including a swinging boardroom table. See where we’re going with this? [Joe] made his own coffee cup gimbal.

The gimbal itself is made out of solid steel, welded together for maximum durability. He first built it out of plastic to test the concept, but then quickly moved to the all-metal solution. It’s a 2-axis gimbal featuring very powerful brushless DC motors, capable of balancing even a light-weight DSLR — however we think balancing a coffee cup is much more entertaining. It does this with ease, even when sitting on the treacherous swinging boardroom table (of DOOM).

[Read more...]

Finally, a Hamster Wheel for the Rest of Us

hamster wheel for people

Numerous studies say standing desks are better for your health, and even more encourage people to walk for longer periods throughout the day. Why not turn your office-desk into a giant hamster-wheel to increase your productivity?

Ridiculous? Yes, but you have to admit — it looks pretty fun. [Robb Godshaw] is the mastermind behind this project, and he has a certain way with words too — this is what he has to say about his project:

Rise up, sedentary sentients, and unleash that untapped potential within by marching endlessly towards a brilliant future of focused work. Step forward into a world of infinite potential, bounded only by the smooth arcs of a wheel. Step forward into the Hamster Wheel Standing Desk that will usher in a new era of unprecedented productivity.

Hah. Regardless of possible productivity gains you might have in the office, it’s a hilariously fun project to do. It was designed in Autodesk Inventor, and the wooden arcs were manufactured using a water jet cutter. The materials list is pretty simple too: 4 sheets of 3/4″ plywood, 4 skateboard wheels, 2 pipes, 240 wood screws and a pint of glue is all that was required to build the wheel.

[Read more...]

MIT’s Robotic Cheetah is Getting Even Scarier

Robotic Cheetah get's upgraded bounding algorithm

Researchers over at MIT are hard at work upgrading their Robotic Cheetah. They are developing an algorithm for bounding movement, after researching how real cheetahs run in the wild.

Mach 2 is fully electric and battery-powered, can currently run at speeds of 10MPH (however they’re predicting it will be able to reach 30MPH in the future), and can even jump over obstacles 33cm tall.

We originally saw the first robotic Cheetah from Boston Dynamics in cooperation with DARPA two years ago — it could run faster than any human alive (28.3MPH) but in its tests it was tethered to its hydraulic power pack and running on a treadmill. It’s unclear if MIT’s Cheetah is a direct descendant from that one, but they are both supported by DARPA.

The technology in this project is nothing short of amazing — its electric motors are actually a custom part designed by one of the professors of Electrical Engineering at MIT, [Jeffrey Lang]. In order for the robot to run smoothly, its bounding algorithm is sending commands to each leg to exert a very precise amount of force during each footstep, just to ensure it maintains the set speed.

[Read more...]

AirLegs Augment Your Cardio by 10%

Pneumatic leg assistanceHere’s another very interesting project to come out of the 4 Minute Mile challenge — pneumatically boosted legs.

It’s another project by [Jason Kerestes] in cooperation with DARPA. We saw his jet pack a few days ago, but this one looks like it has a bit more promise. It is again a backpack mounted system, but instead of a few jet turbines, it has a pneumatic cylinders which move your legs for you.

Just watching it it’s hard to believe it makes it easier to run, but apparently after being tested at the Army Research Laboratories last year it demonstrated a whopping 10% reduction in metabolic cost for subjects running at high speeds. It can actually augment the human running gait cycle, and is the only device the US Army has confirmed can do so.

He is already hard at work designing version 2.0 which is lighter and more flexible. There’s a bunch of test videos after the break so stick around to see it in action.

[Read more...]

Building the World’s Smallest Thermal Camera

worlds smallest thermal imaging camera

[Mike Harrison], the mastermind behind electricstuff.co.uk has just finished reverse engineering the Lepton module found in thermal imaging cameras — he then created his own, and perhaps the world’s smallest thermal camera.

He took apart the Flir One iPhone thermal imaging unit and pulled out the magical part that makes it all possible — the Lepton module. It only has a resolution of 80×60 pixels, but in the world of thermal imaging, it’s pretty decent. You can buy it for $250 (for the module) in order quantities of 1000 straight from Flir.

His blog has all the details about figuring out how to interface with the module, and it is really quite impressive. Once he had it all understood he set out to build it into a small thermal camera. The case is machined out of black acrylic, and an iPod nano screen is used as the display, as 80×60 scales up nicely to the 320×240 resolution of the iPod. A home-brew PCB connects to the module, has a voltage regulator and charging circuit for the lithium ion battery — which is then connected to a prototype iPod nano PCB with some of the features removed — he says it was a nightmare connecting it all, and we don’t blame him, that’s some serious hacking skill!

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,095 other followers