New CNC Machine? DIY Machinable Wax!

The folks at Leeds Hackspace have built themselves a shiny new C-beam based CNC mill. As you might expect everyone wants to try the machine out, but there’s a problem. A CNC machine presents a steep learning curve, and a lot of raw materials (not to mention cutting bits) can be used in a very short time. Their solution is simple: mix themselves some machinable wax from LDPE pellets and paraffin wax, then easily recycle their swarf and failed objects back into fresh machinable wax stock.

Making the wax recipe is not for the faint-hearted, and involves melting the LDPE pellets and wax to 130 degrees Celcius in a cheap deep-fat fryer. They bought the cheapest fryer they could find at the British catalogue retailer Argos, you really wouldn’t want to risk an appliance you cared about in this exercise.

Colouring came from an orange wax crayon, though they note recycling of mixed colours will inevitably result in a muddy brown. The finished mixture was poured into Tupperware lunchboxes to set, and the resulting blocks were trimmed to square on a bandsaw. The Tupperware proved not to have a flat bottom, so later batches were cast in a loaf tin which proved much more suitable.

We’ve mentioned the machinable wax recipe before here at Hackaday, but it’s worth returning to the topic here with a description of it being used in the wild. Having watched other environments get through learning materials at an alarming rate with very little to show for their effort, we can see it makes a lot of sense as a training material.

CNC Drag Knife Upgrade with Off-the-Shelf Blades

Drag Knives seem to be the overshadowed awkward kid on the playground of CNC equipment, but they have a definitive niche making stencils, vinyl stickers, and paper cuts. Unfortunately, the drag knife blades for CNC routers are pricey — over $100 for a single blade. [Brian] at the Grunblau Design Studio took the price point as a challenge to build his own end-effector. A few iterations later, he’s created his very own drag knife blade tool that accepts replaceable steel blades for cutting.

From constraint-driven concept, to a 3D printed proof-of-concept, to a fully machined aluminum prototype, [Brian’s] efforts hit all the highlights of a well-engineered project. At the end of the day, dull blades can be swapped for a few dollars, rather than shelling out another $150 for the off-the-shelf variant. We’ve seen bootstrapped CNC vinyl cutters before, but nothing that takes an original re-envisioning of the tool itself.

FR4 Machine Shield Is A CNC Milling Machine From FR4 PCB

The people behind the PocketNC heard you like CNC PCB mills, so they milled you a PCB mill out of PCB. They announced their surprising new open source hardware product, a pocket sized 3-axis CNC machine entirely made out of FR4 PCB material, aptly named “FR4 Machine Shield”, at this year’s Bay Area Maker Faire.

UPDATE: The FR4 Machine Shield is now on Kickstarter

fr4_thumbWe know the concept from quadcopters, little robots, and generally things that are small enough to make use of their PCBs as a structural component. But an entire CNC machine, soldered together from a few dozen PCBs certainly takes it to the next level.

There is no doubt that 2mm thick fiber reinforced epoxy can be surprisingly rigid, although the Achilles heel of this method might be the solder joints. However, it looks like all load bearing, mechanical connections of the machine are supported by tightly interlocking “dovetail” finger-joints, which may help protecting all the solder connections from the strain hardening effects of continuous stress and spindle vibrations.

As you might expect, most of the wiring is embedded into the FR4 frame construction, and to squeeze the maximum value out of the PCB material, the motor driver boards interface via card edge connectors with the (currently Arduino based) controller board. In addition to the milling head, which features a brushless DC motor and a tool coupler, the team wants to develop heads for circuit printing, microscopy, pneumatic pick and place, hot air reflow, and 3D printing.

With all those cost-driven design choices, from the one-step manufacturing process of the frame and wiring to the dismissal of screws and nuts from the frame assembly, the “FR4 Machine Shield” could indeed become one of the cheapest CNC machine kits on the market. The team targets an introduction price of $400 during a Kickstarter campaign in June 2016. Can they deliver? [Gerrit] checked Pocket NC out at the Faire and ended up raving about how they run their business.

Enjoy their teaser video below!

Continue reading “FR4 Machine Shield Is A CNC Milling Machine From FR4 PCB”

CNC Clock Mills Itself, Displays The Time

[Christian] wrote and sells some CAM/CNC controller software. We’re kinda sticklers for open source, and this software doesn’t seem to be, so “meh”. But what we do like is the Easter egg that comes included: the paths to mill out the base for a clock, and then the codes to move steel ball-bearings around to display the time.

Of course we’d like to see more info (more, MORE, MOAR!) but it looks easy enough to recreate. We could see redesigning this with marbles and a vacuum system, for instance. The seats for the ball bearings don’t even need to be milled out spheres. You could do this part with a drill press. Who’s going to rebuild this for their 3D printer? You just have to make sure that the machine is fast enough to move the balls around within one minute.

Continue reading “CNC Clock Mills Itself, Displays The Time”

Precision CNC With Epoxy Granite

Epoxy granite is an overlooked material when it comes to making home CNC builds. As far as time and money goes, when you add in all the equipment it comes out cheaper than an aluminum casting set-up. Epoxy granite has mechanical properties better than cast iron, increased dimensional stability, better vibration damping, and looks awesome when done right. Also, you can cast precision surfaces and threaded holes into your design, which is pretty cool.

In these two videos by [Jørgen Hegner] we get to watch him and a friend make a matching set of precision CNC machines. It’s built in a similar style to other nice builds we’ve featured. This way of making it needs a bigger footprint than a gantry mill and can’t be built as large. However, it solves a lot of mechanical issues and squaring with the gantry design while not being as difficult to get right as a box or knee mill.

After casting they machined the material embedded in the granite to mount the ways. The ways are linear bearings and ball screws. Expensive, but as the footage shows, very accurate.  The rest of the machine is assembled and tuned. Then it gets installed in a home made 80/20 enclosure. We really like the LCD panel that’s incorporated into the front shield of the machine. They really went all out with the CNC control panel. It looks like they can do anything from jog the axis to monitor and control the water cooling for the spindle.

It appears that all the precision work is put to good use as there are some shots at the end of video two of a beautiful clock CNC’d on this machine. Videos after the break.

Continue reading “Precision CNC With Epoxy Granite”

Cardboard And Paperclip CNC Plotter Destined For Self-Replication

Last November, after [HomoFaciens]’ garbage-can CNC build, we laid down the gauntlet – build a working CNC from cardboard and paperclips. And now, not only does OP deliver with a working CNC plotter, he also plans to develop it into a self-replicating machine.

To be honest, we made the challenge with tongue firmly planted in cheek. After all, how could corrugated cardboard ever make a sufficiently stiff structure for the frame of a CNC machine? [HomoFaciens] worked around this by using the much less compliant chipboard – probably closest to what we’d call matboard here in the States. His templates for the machine are extremely well thought-out; the main frame is a torsion box design, and the ways and slides are intricate affairs. Non-cardboard parts include threaded rod for the lead screws, servos modified for continuous rotation, an Arduino, and the aforementioned paperclips, which find use in the user interface, limit switches, and in the extremely clever encoders for each axis. The video below shows highlights of the build and the results.

True, the machine can only move a pen about, and the precision is nothing to brag about. But it works, and it’s perfectly capable of teaching all the basics of CNC builds to a beginner, which is a key design goal. And it’s well-positioned to move to the next level and become a machine that can replicate itself. We’ll be watching this one very closely.

Continue reading “Cardboard And Paperclip CNC Plotter Destined For Self-Replication”

A Polymer Concrete DIY CNC With No Perceptible Budget In Sight

The Jargon File describes a wizard as someone who groks something to a very high degree, or the kind of person that builds a polymer concrete CNC machine with a pneumatic tool changing spindle that they designed by themselves.  It makes you think that maybe Tony Stark COULD build it in a cave with scraps.

It’s a five part video series showing snippets of the build process. The last video gives an overview of the design of the machine. It is all very much in German, so if you speak German and we got anything wrong about the machine or missed anything cool, please fill us in down in the comments.

The machine starts with a 1500 kg polymer concrete pour with some steel stock embedded in it. It is then machined within an inch mm of its life as shown by practically zero deviation over its length when measured against a granite block. The wizard then goes on to make his own spindle, get castings made, and more. We liked his flowery kitchen hotplate, which he used to heat the bearings for an interference fit. It added a certain amount of style.

Unfortunately the videos don’t show the machine running, but we assume this sort of person is happily building arc reactors, power suits, and fighting crime. They probably don’t have time to film “CNC Bearbeitungszentrum im Eigenbau Teil 5”. Videos after the break.

Continue reading “A Polymer Concrete DIY CNC With No Perceptible Budget In Sight”