Upgrading A Microsoft Surface To A 1 TB SSD

The Microsoft Surface Pro 3 is a neat little tablet, and with an i7 processor, a decent-resolution display, and running a full Windows 8.1 Pro, it’s the closest you’re going to get to a desktop in tablet format. Upgrading the Surface Pro 3, on the other hand, is nigh impossible. iFixit destroyed the display in their teardown, as did CNET. [Jorge] wanted to upgrade his Surface Pro 3 with a 1 TB SSD, and where there’s a will there’s a way. In this case, a very precise application of advanced Dremel technology.

Taking a Surface Pro 3 apart the traditional way with heat guns, spudgers, and a vast array of screwdrivers obviously wasn’t going to work. Instead, [Jorge] thought laterally; the mSSD is tucked away behind some plastic that is normally hidden by the small kickstand integrated into the Surface. If [Jorge] could cut a hole in the case to reveal the mSSD, the resulting patch hole would be completely invisible most of the time. And so enters the Dremel.

By taking some teardown pictures of the Surface Pro 3, printing them out to scale, and aligning them to the device he had in his hand, [Jorge] had a very, very good idea of where to make the incision. A Dremel with a carbide bit was brought out to cut into the metal, and after a few nerve-wracking minutes the SSD was exposed.

The only remaining task was to clone the old drive onto the new one, stuff it back in the Surface, and patch everything up. [Jorge] is using some cardboard and foam, but a sticker would do just as well. Remember, this mod is only visible when the Surface kickstand is deployed, so it doesn’t have to look spectacular.

Thanks [fridgefire] and [Neolker] for sending this in.

Ask Hackaday: Is Amazon Echo the Future of Home Automation?

Unless you’ve been living under a case of 1 farad capacitors, you’ve heard of the Amazon Echo. Roughly the size of two cans of beans, the Echo packs quite a punch for such a small package. It’s powered by a Texas Instrument DM3725 processor riding on 256 megs of RAM and 4 gigs of SanDisk iNAND ultra flash memory. Qualcomm Atheros takes care of the WiFi and Bluetooth, and various TI chips take care of the audio codecs and amplifiers.

What’s unique about Echo is its amazing voice recognition. While the “brains” of the Echo exist somewhere on the Internets, the hardware for this circuitry is straight forward. Seven, yes seven microphones are positioned around the top of the device. They feed into four Texas Instrument 92dB SNR low-power stereo ADCs. The hardware and software make for a very capable voice recognition that works from anywhere in the room. For the output sound, two speakers are utilized – a woofer and a tweeter. They’re both powered via a TI 15 watts class D amplifier. Check out this full tear down for more details of the hardware.

circuit board

Now that we have a good idea of the hardware, we have to accept the bad news that this is a closed source device. While we’ve seen other hacks where people poll the to-do list through the unofficial API, it still leaves a lot to be desired. For instance, the wake word, or the word which signals the Echo to start listening to commands, is either “Alexa” or “Amazon”. There is no other way to change this, even though it should be easily doable in the software. It should be obvious that people will want to call it “Computer” or “Jarvis”. But do not fret my hacker friends, for I have good news!

It appears that Amazon sees (or had seen all along) that home automation is the future of the Echo. They now officially support Philips Hue and Belkin WeMo gadgets. The Belkin WeMo, which is no stranger to the hacker’s workbench, has a good handle on home automation already, making the ability to control things in your house with the Echo tantalizingly close. See the video below where I test it out. Now, if you’re not excited yet, you haven’t heard of the WeMo Maker, a device which they claim will let you “Control nearly any low-voltage electronics device“. While the WeMo Maker is not supported as of yet, it surely will be in the near future.

We know it sucks that all of this is closed source. But it sure is cool! So here’s the question: Is the Echo the future of home automation? Sure, it has its obvious flaws, and one would think home automation is not exactly Amazon’s most direct business model (they just want you to buy stuff). However, it works very well as a home automation core. Possibility better than anything out there right now – both closed and open source.

Do you think Amazon would ever open the door to letting the Echo run open source modules which allow the community to add control of just about any wireless devices? Do you think that doing so would crown Amazon the king of home automation in the years to come?

Continue reading “Ask Hackaday: Is Amazon Echo the Future of Home Automation?”

Reflowing an Entire MacBook Pro

[Sterling]’s MacBook Pro has a propensity to heat up at times. Some of this overheating is due to to what he uses his Mac for – gaming and making music. A larger part of this overheating is that this laptop is a consumer electronics device – it’s going to die sooner or later. One day in March, this laptop bit the bullet, and that’s where this story gets interesting.

Before the MacBook died, [Sterling] was logging temps between 80 and 90ºC, with a maximum of 102º. The simple fixes, compressed air, a laptop stand, and running the fans full blast all the time didn’t help. When the laptop died, [Sterling] was pretty sure some solder joints came loose. Sending the logic board off to a place that specializes in reflowing would take weeks. A more drastic plan of attack was necessary.

[Sterling] disconnected all the wires, connectors, and heat sinks and preheated his oven to 340º F. The logic board was placed on a cookie tray and stuffed into the oven for seven long minutes. Thermal paste was reapplied, heat sinks reinstalled, connectors connected, and the machine booted. It worked great for about eight months with temperatures averaging around 60 or 70º C.

Two weeks ago, the laptop died again. This time it was reflowed with a heat gun and ran for about an hour. The third attempt was the cookie sheet again, only this time [Sterling] added something. Speed holes. Or vents, or whatever else you want to call them.

Now there’s a noticeably increased airflow in the Mac, much better than before. Average temps are back down to 40 or 50º C, lower than they were with just a reflow. The jury is still out if this new addition can go the distance, but with any luck, this mod might make it through 2015.

Thanks [Doug] for the tip.

Fixing Ghost Touch In The OnePlus One

The OnePlus One is the flagship phone killer for 2014, available only by invite, and thus extremely cool. So far it’s a limited production run and there will, of course, be problems with the first few thousand units. When [vantt1] got his One, he noticed a few issues with the touch screen. Some touches wouldn’t be registered, typing was unpredictable, and generally, the touchscreen was unusable. [vantt] had seen this before, though, so with a complete teardown and a quick fix he was able to turn this phone into something great.

[vantt] realized the symptoms of a crappy touchscreen were extremely similar to an iPad mini that had recently had its digitizer replace. From the Foxconn plant, the digitizer in the iPad mini is well insulated from the aluminium enclosure. When the screen and digitizer are replaced, the cable connecting it to the rest of the iPad can come in contact with the case. This leads to the same symptoms – missed touches, and unpredictable typing.

Figuring the same cure will fix the same symptoms, [vantt] tore apart his OnePlus One and carefully taped off the digitizer flex cable. Reassembling the phone, everything worked beautifully, and without any extra screws in the reassembly process. You can’t do better than that.

Hackaday Links: August 3, 2014


A ton of people sent in this video of crazy Russians who have taken a microwave, removed the magnetron, taped it to a broom, and turned it on. Don’t try this at home. Or near us.

You know the Google Cardboard kit that’s a real VR headset made of cardboard (and a smart phone)? Google may have gotten their inspiration from Oculus, because every Oculus Rift DK2 ships with a Samsung Galaxy Note 3 inside.

paul allen

Ever design a PCB and be disappointed by the quality of the silkscreen? [Paul Allen] has been defining the edges of his PCB labels with the copper layer, and the examples are dramatic. Etching copper is what you actually pay for when you fab a board, so it should come as no surprise that the quality is a little higher.

Dunk tanks are fun, but how about competitive dunk tanks? [Chad] built a dunk tank (really more of a ‘dunk shower’) out of a 2×4 tripod, a garbage can, and a few parts from a the toilet aisle of Home Depot’s plumbing department. Then he built a second. Set up both dunk showers across from each other, give two people a few balls, and see who gets soaked last. Looks fun.

Want a MAME cabinet, but don’t want it taking up room in your house? Build a MAME coffee table! Here’s the reddit thread. Maybe we’re old-fashioned, but we’d rather have a giant NES controller coffee table.

Last week we saw a 16-bobbin rope braiding machine, but odd braiding machines like this aren’t limited to fibers. Here’s a wire twisting machine for making RS422 cables. It only produces a single twisted pair, but that’s really all you need to create a cable. Somebody get some paracord and make some Cat5.

Fixing the Unfixable: Pebble Smartwatch Screen Replacement

[Colt] found himself with a broken Pebble, so he fixed it. The Pebble watch really ignited the smartwatch world with its record-breaking Kickstarter campaign. Working on the Pebble has proved to be frustrating experience for hardware hackers though. Ifixit’s teardown revealed the Pebble extremely difficult to repair. This isn’t due to some evil plan by the smartwatch gods to keep us from repairing our toys. It’s a problem that comes from stuffing a lot electronics into a small waterproof package. [Colt’s] problem was a bad screen. Pebble has a few known screen issues with their early models. Blinking screens, snow, and outright failed screens seemed to happen at an alarming rate as the early Kickstarter editions landed. Thankfully all those issues were corrected and replacements sent to the unlucky owners.

The actual screen used in the Pebble is a Sharp Memory LCD. Memory is an apt name as the screens actually behave as a SPI attached write only memory. Sharp sells flexible printed circuit (FPC) versions of the LCDs to aid in debugging. For space constrained designs though, an elastomeric or “zebra strip” connector is the common way to go. Alternating bands of conductive and insulating material make electrical connections between the Pebble’s circuit board and the conductive portions of the LCD glass.

[Colt] found himself with a dead screen out of warranty, so he decided to attempt a screen replacement. He found a replacement screen from Mouser, and proceeded to remove the top case of his watch. The top plastic case seems to be the hardest part of getting into a Pebble. It appears to be bonded with a glue that is stronger than the plastic itself. [Colt] broke the glass of his screen during the removal, which wasn’t a big deal as it was already dead. Prying only destroyed the top plastic, so he broke out a rotary tool which made quick work of the plastic.  The new screen worked perfectly, but had to be held in just the right position over its zebra connector. Some waterproof epoxy held it in place permanently. The next step was a new top cover. An old flip phone donated its plastic shell to the effort, and hot glue kept everything in place. [Colt] finished his work with a couple of layers of model paint. The result certainly isn’t as pretty or waterproof as the original. It is functional though, and about $120 USD cheaper than buying a new Pebble.

Continue reading “Fixing the Unfixable: Pebble Smartwatch Screen Replacement”

Thecontrollerproject’s first contest, with prizes


One of [Caleb]’s side projects before he left us was TheControllerProject, a place for controller and console modders to hook up with gamers with disabilities. Things must be hopping over there, because [Caleb] just announced his first contest, with prizes, even.

The goal of this contest is to make the trigger buttons on XBox and PS3 controllers able to be controlled from the top of the controller. This is a huge problem for gamers with disabilities, and no open system currently exists to solve this problem. If you can make some sort of mechanical device to turn shoulder-mounted buttons into top-mounted actuators, just host it somewhere and win a prize.

The prizes are an iFixit toolkit and magnetic mat. The first five people to send in a solution to the shoulder mounted button problem get this prize. Originally, [Caleb] thought about tearing apart these controllers and soldering extra buttons, but a snap-on mechanical solution is much easier to install.

If you design a solution to this problem, send it in (but send it to [Caleb] first!) and we’ll probably feature it too.

Continue reading “Thecontrollerproject’s first contest, with prizes”