Digispark Pro, The Bigger Smaller Dev Board


There has recently been a huge influx of extremely small dev board based on the ATtiny85. This small 8-pin microcontroller is able to run most Arduino sketches,  and the small size and low price of these dev boards means they have been extremely popular. The Digispark was among the first of these small boards, and now the creator is releasing a newer, bigger version dubbed the Digispark Pro.

The new board isn’t based on the ‘tiny85, but rather the ATtiny167. This larger, 20-pin chip adds 10 more I/O pins, and a real hardware SPI interface, but the best features come with the Digispark Pro package. There’s real USB programming, device emulation, and serial over USB this time, and the ability to use the Arduino serial monitor, something not found in the original Digispark.

There are also a few more shields this time around, with WiFi and Bluetooth shields available as additional rewards. Without the shields, the Digi Pro is cheap, and only $2 more per board than the original Digispark.




3D printers are the tool of choice for all the hackerspaces we’ve been to, and laser cutters take a close second. There’s another class of plastic manipulating machines that doesn’t get enough credit with the hackerspace crowd – the vacuum thermoformer. Surprisingly, there haven’t been many – if any – vacuum formers on Kickstarter. Until now, that is.

[Ben] and [Calvin] are the guys behind the MOFO, and built their machine around ease of use and reliability. After a few prototypes, they settled on their design of aluminum extrusion for the frame, a ceramic heating element for the heater, and an off-the-shelf PID controller for the electronics.

The MOFO has so far been tested with polycarbonate, acrylic, PETG and styrene with good results. The Kickstarter has reward levels of $500 for a 12″x12″ work area, and $1000 for a 24″x24″ work area. That’s not too bad, and building your own similar thermoformer would probably cost just as much. Just the thing if you need to print out a few dozen sets of storm trooper armor.


Need An Idea For Your Next Kickstarter? Check Out This Kickstarter!


Kickstarter has become the most powerful force in kickstarting new hardware projects, video games, documentaries, and board games, and now everyone wants a piece of the action. The problem obviously isn’t product development and engineering; you can just conjure that up with a little bit of Photoshop and some good PR. The only you really need for a good Kickstarter is an idea, and META is just the tool for the job. It’s the Arduino-powered Motivational Electronic Text Adviser, the perfect device to generate the next big idea in the world of crowdfunding.

The Arduino-powered META includes three buttons and an Arduino-controlled LCD display. Press a button, and the next big hardware project to wash across the blogs faster than the announcement of a campaign for a $300 3D printer will appear on the screen.

Because META is Arduino-compatible, it’s compatible with existing Arduino sketches. This makes turning the META into the next home automated Bluetooth low energy 4.0 internet of things a snap. Because this is open hardware the laser cut enclosure can easily be upgraded to an RGB LED 3D printer robotic drone bluetooth boombox.

If Kickstarters aren’t your thing, there’s also a cloud-based META that will generate ideas in the mobile app browser cloud. Bitcoin.

[Bunnie] Launches the Novena Open Laptop

Novena Laptop

Today [Bunnie] is announcing the launch of the Novena Open Laptop. When we first heard he was developing an open source laptop as a hobby project, we hoped we’d see the day where we could have our own. Starting today, you can help crowdfund the project by pre-ordering a Novena.

The Novena is based on the i.MX6Q ARM processor from Freescale, coupled to a Xilinx Spartan 6 FPGA. Combined with the open nature of the project, this creates a lot of possibilities for using the laptop as a hacking tool. It has dual ethernet, for routing or sniffing purposes. USB OTG support lets the laptop act as a USB device, for USB fuzzing and spoofing. There’s even a high speed expansion bus to interface with whatever peripheral you’d like to design.

You can pre-order the Novena in four models. The $500 “just the board” release has no case, but includes all the hardware needed to get up and running. The $1,195 “All-in-One Desktop” model adds a case and screen, and hinges open to reveal the board for easy hacking. Next up is the $1,995 “Laptop” which includes a battery control board and a battery pack. Finally, there’s the $5000 “Heirloom Laptop” featuring a wood and aluminum case and a Thinkpad keyboard.

The hardware design files are already available, so you can drool over them. It will be interesting to see what people start doing with this powerful, open computer once it ships. After the break, check out the launch video.

[Read more...]

An Open Source iPad Display Adapter


Those fancy 2048×1536 pixel resolution displays found in the iPad 3 and 4 can be used for much more than high def Candy Crush and Netflix viewing. [Freddie] over in Southampton, UK built his own adapter to connect these high-resolution LCD panels to anything with a DisplayPort connection. It’s called OSCAR, and it’s the open source way to add a whole lot of pixels in a second (or third, or fourth….) monitor.

The LCD panels found in the iPad 3 and 4 don’t use the usual LVDS connection found in just about every other LCD panel ever made. It uses an extension of the DisplayPort protocol, meaning any graphics card with one of these ports already does the heavy lifting for this panel. The only other thing that’s needed is an adapter to control the power and backlight, which is easily handled by an ATMega32U4. This makes OSCAR Arduino compatible, making it easy to add sensors and USB playthings.

OSCAR is available on Kickstarter for £65 (~$100 USD) for the board itself. Adding to that, you’ll need to grab an iPad retina display through the usual channels for about $65. Not exactly cheap, but try finding another better-than-1080p display for that price.

SOAP Drama: An Interview With The SOAP Creators


A few days ago, we caught wind of SOAP, a Kickstarter project for an Android-based home automation router. With a quad-core ARM, quad gigabit Ethernet ports, 802.11ac, SATA, and every radio under the sun – all for $100 (sans display, $170 with display), it seemed too good to be true. At the time, it probably was: the images from the PCB prototype were taken from [Bunnie Huang]‘s open source laptop, there weren’t enough Ethernet ports for a router, and the hardware just seemed all wrong.

The guys behind SOAP have decided to respond to these accusations by posting a huge update on their Kickstarter page and answering a few questions from me. Interview follows below.

HaD: There’s a BOM/cost analysis breakdown for the Essentials package (the SOAP sans display) that puts the total cost at about $130. This is the reward for pledging at the $100 level. How accurate is this cost analysis, and how do you plan on meeting that reward level?

SOAP: This cost analysis that you mention is very accurate. We will not profit on the early release pricing of $60.00 we have taken the loss leader pricing to attract backers and press (and we think we have done a good job). We are working with a large router manufacturer and this is really the link that makes the pricing possible without them we couldn’t do this.

HaD: You’re using a Quad Core Freescale i.MX processor for SOAP, and putting a four port Gigabit router in there. The Quad core i.MX chips only have one Gigabit port, and that’s limited to 470 Mbps. How are you solving this problem, and what are you using as a MAC/PHY?

SOAP: First off let me state that we are very aware of the CPU limitations and we have done a lot of work on finding a solution and we do have a unique solution. We have support from a big player in the router industry that has offered us a unique solution that we have been working on to bypass this issue. We will post more on this after our trip to San Jose. This is our fallback method and yes its benchmarks are not as pretty as we want them but they are getting there and we feel with enough tweaks we can get this to decent level.

This is from our layout guy: We are planning I.mx processor’s gigabit port will be connected to external IC working as a switch. 1Gb ethernet -> 1 to 4 switch -> 4x Gb Ethernet ports. Possible  http://www.ti.com/lit/ds/symlink/tnetx4090.pdf. Use 4 ports from there plus put RGMII Ethernet transceiver from Marvell  for each ETH port and we will have on board Ethernet switch.

HaD: What WiFi chipset/chipsets are you using? Will that/they be able to do 802.11ac at full speed, and how are you doing this with (I think) only one antenna on the updated board images?

SOAP: The speeds have varied greatly on the chipset and how buggy the software was for the day but we have clocked speeds over 1 gigabyte per second and we will continue to develop this further to achieve maximize speeds this is where our new Union with the guys over at Droidifi will help.

In our prototype we tested Avastar 88W8864, Broadcom 4360 , and a couple more that failed to actually work.  We didn’t get those all functioning like we would have wanted as there is little support for android and router chipsets to date. We demo with a Broadcom chipset.

We want to use Quantenna QAC2300 but at current funding we will be using the Broadcom we have received a lot of suggestions from our backers and a new big player behind us that thinks they have the right match we are waiting to announce this after our meeting in San Jose.

We have one antenna on the most current design but we are planning on adding two more for the final design. We didn’t place them on the most recent design because we are waiting to see how much funding we get to finalize the wifi chipset. We didn’t want antenna design that worked best with a Broadcom when we switch to Marvel or Quantenna.

HaD: What is the status of the software? Do you have a repo somewhere that people could look over?

SOAP: We have been working with a new player from the older kickstarter project called Droidifi. We will be working with them on the software. This is a something we haven’t been able to announce till we lock it down but you are the first to know about this union. Check out our update later today.

HaD: Finally, do you have a functional prototype with the quad-core i.MX, four Ethernet ports, and WiFi? Can we see a video?

SOAP:  If you mean a mass production ready device that can be used by an end user then no. We have a solid functioning proof of concept prototype. We have a lot of Demo videos of our POC that show  what we have developed so far.  We  have to have the current PCB design manufactured to get down to the more rigorous testing and qualifying. All the specs listed on our kickstarter are what we currently are planning and we hope to fulfill the tech specs.

HaD: There are some other questions in the Kickstarter comments section, but honestly I don’t care about how many Twitter followers you have.

SOAP: Twitter was our marketing company. We thought people actually were following us but we have  since found out that half of them are not real. Check this out though.

All in all we understand how ambitious this project looks and we also know that it technology development can run into roadblocks and things but we want to be clear we are not a scam and we are quite aware where these attacks have originated. We will continue to work hard on this project, we will not be running off to Costa Rica and we plan on seeing everyone at CES next year.

The TL;DR for everyone without an attention span:

Yes, the $100/$170 price is too good to be true. It’s called a loss leader to generate interest. This part was a success. The SOAP guys are partnering with the DroidFi guys for the operating system. The Gigabit Ethernet will probably work, and the WiFi is limited by *nix chipset support. No complete functional prototypes yet.

So there you go. It’s not the ideal update with the SOAP crew showing off a shipping container of units ready to be shipped, but the project isn’t in as bad a shape as I originally thought.

The LATHON Dual Nozzle 3D Printer


Our friends at Freeside Atlanta have been keeping busy despite the city-stopping snowstorms they’ve been suffering recently. This time it’s a 3D printer with dual extrusion: the LATHON printer. [Nohtal] bought his first 3D printer only two years ago, but his experiences led him to build his own to overcome some of the issues he encountered with standard printers.

The LATHON keeps the bed stable and instead moves only the nozzles, using Bowden extrusion to reduce the weight on the moving parts. A key feature is the addition of a second nozzle, which usually limits the print area. The LATHON, however, maintains a 12″x9″x8″ build volume thanks to the Bowden extruders. [Nohtal] documents the majority of his build process on Freeside’s blog, including using a plastic from GE called Ultem 2300 for the print bed, and running the printer through its paces with a slew of materials: ABS, PLA, HIPS, Nylon, TPE, Wood, and Carbon Fiber. You can find more information on the Kickstarter page or at lathon.net

Check out some videos below!

[Read more...]