The Last Week Of The Mooltipass Approacheth

A year and two days ago, [Mathieu] started out on a quest to develop some hardware with the help of Hackaday readers. This project became known as the Mooltipass, an open source offline password keeper that’s pretty much a password management suite or Post-It notes on a monitor, except not horribly insecure.

The product has gone through multiple iterations of software, [Mathieu] flew out to China to get production started, and the project finally made it to a crowdfunding site. That crowdfunding campaign is almost over with just eight days left and just a little bit left to tip this project into production. This is the last call, all hands in, and if you’re thinking about getting one of these little secure password-storing boxes, this is the time.

You can check out the Developed on Hackaday series going over the entire development of the Mooltipass, made with input from Mooltipass contributors and Hackaday readers. The Venn diagram of those two groups overlaps a lot, making this the first piece of hardware that was developed for and by Hackaday readers.

Even if you have a fool-proof system of remembering all your passwords and login credentials, the Mooltipass is still a very cool-looking Arduino-compatible board. Note that (security device) and (Arduino thing) are two distinct operating modes that should not be conflated.

[Mathieu] and other contributors will be in the comments below, along with a bunch of ‘security researchers’ saying how this device ‘is horrifying’, ‘full of holes’, and ‘a terrible idea’. One of these sets of people have actually done research. Guess which?

Crosswalk Pong Auf Deutschland

What is there to do in America while you’re waiting to cross the street at an intersection? Nothing; listen to that impatient clicking sound, and if you live in a busy city, pray you don’t get plowed into. In Germany however, pedestrians will now get to play Pong with the person on the other side.That’s right, as a means to encourage people to just hang in there and wait out the cycle instead of darting across against the light, design students [Sandro Engel] and [Holger Michel] came up with an entertaining incentive involving a potential conversation sparking duel with your impromptu counterpart across the street.

The first of these interactive cross-walk indicators was installed recently in Hildesheim, Germany, two years after the duo first designed them back in 2012. There was a little friction about installing the touch screen equipped modules initially, but after a proper redesign for functionality taking traffic science into account, the city authorities caved and allowed them to test the wings of their progressive idea on one city intersection so far. The mindset behind the invention of these indicators is part of a larger movement to make public spaces safer through means of fun and entertainment. Instead of threatening to punish those partaking in unsafe activity with fines, the notion is to positively enforce following rules by adding a level of play. While pedestrians have the right to walk, the screen shows how much time is left to make their away across, and for the duration that traffic is rolling through, the score will be kept for an individual game of pong for those on either side of the light.

Since the idea is generating some interest, the group of developers involved with the project have moved to promote their work (now branded as Actiwait) with an Indiegogo campaign. They hope to turn their invention into a full fledged product that will potentially be seen all over the world. Admittedly, it’d be charming to see this sort of technology transform our urban or residential environments with a touch of something that promotes friendly social interaction. Hopefully my faith in our worthiness to have nice things is warranted and we start seeing these here in America too. Nice work!

Check out this encounter with the street indicator here. The guy introducing the invention loses to the girl on the other side, but they share a high-five as they pass in the street:

Continue reading “Crosswalk Pong Auf Deutschland”

HackRF Blue

For anyone getting into the world of Software Defined Radio, the first purchase should be an RTL-SDR TV tuner. With a cheap, $20 USB TV tuner, you can listen to just about anything between 50 and 1750 MHz. You can’t send, the sample rate isn’t that great, but this USB dongle gives you everything you need to begin your explorations of the radio spectrum.

Your second Software Defined Radio purchase is a matter of contention. There are a lot of options out there for expanding a rig, and the HackRF is a serious contender to expand an SDR rig. You get 10 MHz to 6 Gigahertz operating frequency, 20 million samples per second, and the ability to transmit. You have your license, right?

Unfortunately the HackRF is a little expensive and is unavailable everywhere. [Gareth] is leading the charge and producing the HackRF Blue, a cost-reduced version of the HackRF designed by [Michael Ossmann].

The HackRF Blue’s feature set is virtually identical, and the RF performance is basically the same: both the Blue and the HackRF One can get data from 125kHz RFID cards. All software and firmware is interchangeable. If you were waiting on another run of the HackRF, here ‘ya go.

[Gareth] and the HackRF Blue team are doing something rather interesting with their crowdfunding campaign: they’re giving away Blues to underprivileged hackerspaces, with hackerspaces from Togo, Bosnia, Iran, India, and Detroit slated to get a HackRF Blue if the campaign succeeds.

Thanks [Praetorian] and [Brendan] for sending this in.

Continue reading “HackRF Blue”

Serial Camera, Courtesy of the STM32F4

Look around for a small, embedded camera module, and you’ll find your options are rather limited. You have the serial JPEG cameras, but they’re rather expensive and only have VGA resolution. A Raspi, webcam, and power supply is a false economy. GoPros are great, but you’re still looking at some Benjamins used.

The guys at GHI Electronics are taking a different tack. They’re using image sensors you would normally find in cellphones and webcams, adding a powerful ARM processor, and are still able to sell it for about $50. It’s called the ALCAM, and they’ve stumbled upon a need that hasn’t been met by any manufacturer until now.

On board the ALCAM is an OV3640 3-Megapixel image sensor. On the back of the board is a STM32F4 and a microSD card slot. The board can be set up for time-lapse videos, stop motion animation, or all the usual serial board camera functions, including getting images over a serial connection.

The ALCAM operates either connected to a PC though a 3.3V serial adapter cable, through a standalone mode with pins connected to a button or sensor, to the SPI bus on a microcontroller, or a serial to Bluetooth or WiFi bridge. Images can be saved to the uSD card, or sent down the serial stream.

It’s a pretty cool board, and if you’re thinking it looks familiar, you’re right: there’s a similar DSI camera/STM32F4 board that was an entry to The Hackaday Prize. Either way, just what we need to get better cameras cheaper into projects.

Christmas Lights And Ships In A Bottle

Thanksgiving was last week, and Christmas has been invading department stores for two or three months now, and that can only mean one thing: it’s time to kill a tree, set it up in your living room, and put a few hundred watts of lights on it. All those lights, though; it’s as if Christmas lights were specifically invented as fodder for standup comedians for two months out of the year. Why can’t someone invent wireless Christmas lights?

We don’t know if it’s been invented, but here’s a Kickstarter campaign that’s selling that same idea. It’s called Aura, and it’s exactly what it says on the tin: wireless Christmas lights, controllable with a smartphone. If it works, it’s a brilliant idea.

Continue reading “Christmas Lights And Ships In A Bottle”

HDMI Out With A Brick Game Boy

A few years ago, some vastly clever people figured out how to listen in on the LCD display on the classic brick Game Boy from 1989. There have been marked improvements over the years, including a few people developing VGA out for the classic Game Boy. Now, the bar has been raised with an HDMI adapter for the Game Boy, designed in such a way that turns everyone’s favorite battery hog into a portable console.

Your classic beige or cleverly named Color Game Boy is composed of two halves. The rear half contains all the important circuitry – the CPU, cartridge connector, and the rest of the smarts that make the Game Boy game. The front half is fairly simple in comparison, just an LCD and a few buttons. By designing an adapter that goes between these two halves, [Zane] and [Joshua] were able to stuff enough circuitry inside the Game Boy to convert the signals going to the LCD to HDMI. Plug that into your TV, and you have a huge modern version of the Super Game Boy, no SNES required.

The HDMIBoy also breaks out the buttons to the classic NES controller connector. With HDMI out and a controller input, the old-school Game Boy become a portable if somehow even more brick-like console.

A USB-Controlled POV Light Stick

Wanting to showcase their USB LED strip controller, the folks at Maniacal Labs built a POV LED stick this weekend. Yes, it’s pretty much the same as any other POV LED display you’ve seen; set a camera for a long exposure, wave the POV light stick around, and get a cool pixely image in mid-air. This build is a little different, though: it’s controlled over WiFi with a Raspberry Pi connected to a WiFi network.

The USB LED strip controller in question is the AllPixel, a small board that controls NeoPixels, WS2801, LDP8806, and a bunch of other LED strip controllers over USB. The Stick used for this project consisted of two meters of LPD8806 LEDs, giving 96 pixels of horizontal resolution. A big battery and Raspberry Pi rounds out the rest of the electronics.

Building a LED POV display isn’t that much different from building a LED matrix display; all you have to do is break up the image into individual columns and display them sequentially. To do this, the Maniacal Labs folks whipped up a LEDPOV class that does just that. To get the images, just open the shutter on a camera, wave the stick around, and if you get it right, you’ll have a great pixely image of nyan cat or the rainbow wrencher.