[Brainsmoke] had a simple plan. Make a quadcopter with lots of addressable LEDs.

Not just a normal quadcopter with ugly festoons of LED tape though. [Brainsmoke] wanted to put his LEDs in a ball. Thus was born the polyhedrone, the idea of a flying deltoidal hexecontahedron covered as you might expect with all those addressable LEDs.

polyhedrone-PCB-kicadA Catalan solid makes a good choice for the homebrew polyhedron builder because its faces are all identical. Thus if you are making PCBs to carry LEDs, for example, you need only create a single PCB design to use on all faces. A bit of work in KiCAD, and a single face design with interlocking edges was ready. The boards were tested, a wiring layout was worked out, and the polyhedron was assembled.

But [Brainsmoke] didn’t stop there. He produced a flight case for the polyhedron, in the form of a larger polyhedron from what looks like lasercut thin ply.

Having a finished polyhedron, the next thing was to hook up a Raspberry Pi and write some software. First in Python, then in Go.

polyhedrone-light-1The results are simply stunning. If the mathematics and construction of a polyhedron were not enough to make this project worth a second look, then the gallery of images should be enough. You’ll notice that this is ostensibly a quadcopter project, yet no mention of flying has been made on this page. That’s because this is still a work in progress at Tech Inc Amsterdam, and there is more to come. But it honestly doesn’t matter if this project never moves a millimeter off the ground, as far as we are concerned [Brainsmoke] has created a superbly built thing of beauty in its own right, and we like that.

As you might expect, this is just the latest of many projects featured here that have involved addressable LEDs or quadcopters. Of note among them is this LED polyhedron that cleverly closes in all its bits, and this LED-equipped quadcopter that generates very pleasing patterns with a hi-res cross of pixels.

Very Pretty Gimbal With Long Feature List

What can you do when you have a nice CNC machine, but build beautiful things like this 3-axis gimbal? We covered some of [Gal]’s work before, and he does not subscribe to the idea that hacks should look like hacks. If you’re going to spend hours and hours on something, why not make it better looking than anything you could buy off-the-shelf.

The camera is held stationary with three hollow shaft gimbal motors with low cogging. We weren’t aware of hollow shaft motors, but can think of lots of sensor mounts where such a motor could be used to make very compact and smooth sensor mounts instead of the usual hobby servo configuration. The brains are an off-the-shelf gimbal controller. The gimbal has a DB9 port at the back which handles charging of the internal LiPo batteries as well as giving him a place to input R/C signals for manual control.

The case is made from CNC’d wood and aluminum. There are lots of nice touches. For example, he added two buttons so he could fine tune the pitch of the gimbal. Each button is individually engraved with an up/down arrow.

[Gal] reverse engineered the connector on Garmin action camera he’s using so he can keep it powered, stream video, or add an external mic. Next he built a custom 5.8Ghz video transmitter based on a Boscam module. The transmitter connects to the DB9 charging port on the gimbal.

It’s very cool when someone builds something for themselves that’s far beyond anything they could buy. A few videos of it in operation after the break.

Continue reading “Very Pretty Gimbal With Long Feature List”

Mini Quadcopter Becomes Paper Airplane

Several of us got Cheerson CX-10 mini quadcopters last year. We even bought some more to hand out as Christmas gifts. If you haven’t seen them, they are diminutive little flyers about the size of an English muffin. Thee’s no denying they are fun to fly around the house, and they do annoy the dogs.

However, like all cute toys, you eventually get bored just buzzing the dogs and cats. [JustforFun Media TK] decided that his needed a facelift, so he converted it into a paper airplane. This isn’t the paper airplane you folded up in school, either. This is a slick-looking jet aircraft.

Continue reading “Mini Quadcopter Becomes Paper Airplane”

Imperial Shuttle Drone Is Sure To Scare the Cat

[Adam Woodworth] tries to build some kind of RC plane every month. He’s been at it for almost a decade, and he’s getting pretty damn good at it. By day, he’s a Hardware Engineer at Google, though he went to MIT for Aerospace Engineering. Coincidence? We think not.

His latest project is an Imperial Shuttle drone, or to be specific, a Lambda class imperial shuttle — the infamous Shuttle Tydirium. You have to watch this thing unfold.

Using paper model plans, [Adam] printed out the shuttle on a combination of 3mm and 6mm thick foam board (Depron), and then assembled it. This kept the model light enough that the set of quad rotors would have more than enough power to fly it around.

Continue reading “Imperial Shuttle Drone Is Sure To Scare the Cat”

A Quadcopter Controlled By A Pi Zero

Flight controllers for quadcopters and other drones are incredible pieces of engineering. Not only do these boards keep an aircraft level, they do so while keeping the drone in one place, or reading a GPS sensor and flying it from waypoint to waypoint. The latest of these flight controllers is built on everyone’s favorite $5 computer, the Raspberry Pi Zero.

The PXFmini controller and autopilot shield is the latest project from Erle Robotics that puts eight servo outputs on the Pi, barometer and IMU sensors, a power supply, and all the adapters to turn the Raspberry Pi Zero into a capable flight controller. Since the Pi Zero will have some computational horsepower left over after keeping a quadcopter level, there’s a possibility of some very cool peripherals. Erle Robotics has been working with depth cameras and Lidar on more than a few drones. This makes for some interesting applications we can only imagine now.

The schematics for the PXFmini are open source in the best traditions of the RC and drone community and will be available soon. You can check out a video of the FXPmini flying around an office below.

Continue reading “A Quadcopter Controlled By A Pi Zero”

Manned Multicopter Project Undaunted By Crash

We have to be impressed by [amazingdiyprojects] who completely totaled their manned multi-copter build, which has been spanning over eight videos. He explained the crash in video number eight and is right back at it, learning from the recent mistakes.

When you get right down to it, this is as dangerous as this seems. However, a giant multicopter is probably the easiest flying machine for a hobbyist to build. It’s an inefficient brute-force approach, but it sure beats trying to build a helicopter from scratch. This machine is a phenomenally un-aerodynamic chair on a frame that has a lot in common with the lunar rover; with engines on it. Simple.

There are a lot of approaches to this. One of the crazier ones is this contraption with a silly amount of electric motors. [amazingdiyprojects] went with eight gasoline engines. We’re really interested in his method for controlling the rpm of each engine and dealing with the non-linearity of the response from a IC engine throttle. Then feeding that all back into what is probably the exact same electronics from a regular diy drone.

Honestly, we’re surprised it worked, and we can’t wait for him to finish it so we can see him zooming around in his danger chair. Videos after the break.

Thanks [jeepman32] for the tip!

Continue reading “Manned Multicopter Project Undaunted By Crash”

FAA Rescinds Drone Ban Around DC

Late last year, the FAA expanded a Special Flight Rule Area (SFRA) that applied to Unmanned Aerial Systems, drones, and RC airplanes around Washington DC. This SFRA was created around the year 2000 – for obvious reasons – and applies to more than just quadcopters and airplanes made out of foam. Last December, the FAA expanded the SFRA from 15 nautical around a point located at Reagan National to 30 nautical miles. No remote-controlled aircraft could fly in this SFRA, effectively banning quadcopters and drones for six million people.

Today, the FAA has rescinded that ban bringing the area covered under the Washington DC SFRA to 15 nautical miles around a point inside Reagan National. This area includes The District of Columbia, Bethesda, College Park, Alexandria, and basically everything inside the beltway, plus a mile or two beyond. Things are now back to the way they were are few weeks ago.

The 30-mile SFRA included a number of model flying clubs that were shuttered because of the ban. DCRC is now back up. The Capital Area Soaring Association worked with the FAA and AMA to allow club members to fly.

Of course, limitations on remote-controlled aircraft still exist. For the most part, these are rather standard restrictions: aircraft must weigh less than 55 pounds, fly below 400 feet line of sight, and must avoid other aircraft.