The FAA Wants Your Input On Upcoming Drone Regs

Earlier this week, the US Department of Transportation announced registration would be required for unmanned aerial systems. Yes, drones will be regulated, and right now representatives from the Academy of Model Aircraft, the Air Line Pilots Association, the Consumer Electronics Association and others are deciding which quadcopters, planes, and other aircraft should be exempt from registration.

Now, the US DOT and FAA are looking for consumer’s input. The US DOT is asking the public such questions as:

  • Should registration happen at point-of-sale, or after the box is opened?
  • Should registration be dependant on serial numbers? If so, how will kits be registered?
  • Should certain drones/UAS be excluded from registration? Should weight, speed, maximum altitude, or flight times be taken into account?
  • Should registration require a fee?
  • Are there any additional ways of encouraging accountability of drone/UAS use?

Comments will be taken until November 6, with the task force assembled by the US DOT providing its regulations by November 20. The hope for all involved parties is that this system of regulation will be in place for the holiday season. One million UAS are expected to be sold by Christmas.

3D Printed Quadcopter Props

Here’s something that isn’t quite a hack; he’s just using a 3D printer as a 3D printer. It is extremely interesting, though. Over on [Anton] is creating 3D printable propellers for quadcopters and RC planes. Conventional wisdom says that propellers require exceedingly exacting tolerances, but [Anton] is making it work with the right 3D file and some creative post-processing treatment of his prints.

These 3D printed props are a remix of an earlier project on Thingiverse. In [Anton]’s testing, he didn’t get the expected lift from these original props, so a few small modifications were required. The props fit on his 3D printer bed along their long edge allowing for ease of slicing and removal of support material. For post-processing, [Anton] is using acetone vapor smoothing on his ABS printed design. They come out with a nice glossy sheen, and should be reasonably more aerodynamic than a prop with visible layer lines.

Although [Anton]’s prop is basically a replica of a normal, off-the-shelf quadcopter prop, 3D printing unique, custom props does open up a lot of room for innovation. The most efficient propeller you’ll ever find is actually a single-bladed propeller, and with a lot of experimentation, it’s possible anyone with a well-designed 3D printer could make turn out their own single-blade prop.

Continue reading “3D Printed Quadcopter Props”

Breaking: Drone Registration Will Be Required Says US DoT

Today, the US Department of Transportation announced that unmanned aerial systems (UAS) will require registration in the future.

The announcement is not that UAS, quadcopters, or drones would be required to be registered immediately. This announcement is merely that a task force of representatives from the UAS industry, drone manufacturers, and manned aviation industries would provide recommendations to the Department of Transportation for what types of aircraft would require registration. The task force is expected to develop these recommendations and deliver a report by November 20.

A Short History of FAA Model Aircraft Regulation

Introduced in 1981, AC 91-57 was the model aircraft operating standards for more than 30 years. This standard suggested that model pilots not fly higher than 400 feet, and to notify a flight service station or control tower when flying within three miles of an airport.

The FAA Modernization And Reform Act Of 2012 (PDF) required the FAA to create a set of rules for unmanned aerial systems, however the FAA is expressly forbidden from, ‘promulgating any rule or regulation regarding model aircraft.’ The key term being, ‘model aircraft’. This term was defined by the FAA as being, “an unmanned aircraft that is capable of sustained flight in the atmosphere; flown within visual line of sight of the person operating the aircraft; and flown for hobby or recreational purposes.” Anything outside of this definition was an unmanned aerial system, and subject to FAA regulations.

While this definition of model aircraft would have been fine for the 1980s, technology has advanced since then. FPV flying, or putting a camera and video transmitter on a quadcopter, is an extraordinarily popular hobby now, and because it is not ‘line of sight’, it is outside the definition of ‘model aircraft’.

This interpretation has not seen a great deal of countenance from the model aircraft community; FPV flying is seen as a legitimate hobby and even a sport. The entire domain of model aircraft aviation is expanding, and the hobby has never been as popular as it is now.

The Safety of Model Aviation

The issue of drone regulation focuses nearly entirely on the safety of airways in the United States; model aviators flying within five miles of an airport must ask the airport or control tower for permission to fly. To that end, the FAA created the B4UFLY app that takes the trouble out of reading sectional charts and checking up on the latest NOTAMs and TFRs.

However, the FAA is increasingly concerned with drones, multicopters, and model aircraft. In a report issued last summer, the FAA cited a marked increase in the number of ‘close calls’ between manned aircraft and model aircraft. The Academy of Model Aeronautics went over this data and found a different story: only 3.5% of sightings were ‘close calls’ or ‘near misses’. The FAA data is questionable – the reports cited include a drone flying at 51,000 feet over Washington DC. Not only is this higher than any civilian passenger aircraft capable of flying, the ability for any civilian remote-controlled aircraft to operate at this altitude is questionable at best.

Nevertheless, the requirement for registration has been greatly influenced by the perceived concerns of regulators for mid-air collisions.

What exactly will require registration?

The group of industry representatives responsible for delivering the recommendations to the Department of Transportation will take into account what aircraft should be exempt from registration due to a low safety risk. Most likely, small toy quadcopters will be exempt from registration; it’s difficult to fly a small Cheerson quadcopter outside anyway. Whether this will affect larger quadcopters and drones such as the DJI Phantom, or 250 class FPV racing quadcopters remains to be seen.

You Might Want To Buy A Quadcopter Now

NBC News has reported the US Government may implement regulations in the coming days that would require anyone who buys an unmanned aircraft system to register that device with the US Department of Transportation.

The most simplistic interpretation of this news is that anyone with a DJI Phantom or a model aircraft made out of Dollar Tree foam board would be required to license their toys. This may not be the case; the FAA – an agency of the US DoT – differentiates between unmanned aircraft systems and model aircraft.

This will most likely be the key thing to watch out for in any coming regulation. The FAA defines model aircraft as, “an unmanned aircraft that is capable of sustained flight in the atmosphere; flown within visual line of sight of the person operating the aircraft; and flown for hobby or recreational purposes.” Additionally, the FAA may not make any regulations for model aircraft. While this means planes and quads flown without FPV equipment may be left out of this regulation, anything flown ‘through a camera’ would be subject to regulation.

Show a Quadcopter Flight on Google Earth for Under Ten Bucks

[Joop Brokking] wanted to know where his quadcopter was and had been. He thought about Google Earth, but assumed it would be difficult to get the GPS data and integrate it with Google’s imagery. But he discovered it was easier than he thought. He wound up spending around $10, although if his ‘copter didn’t already have GPS, it would have been more.

Hardware-wise, [Joop] made a pretty straightforward data logger using a small Arduino (a Pro Mini) and an SD Card (along with an SD breakout board). With this setup, NMEA data from the GPS comes in the Arduino’s serial port and winds up on the SD Card.

Continue reading “Show a Quadcopter Flight on Google Earth for Under Ten Bucks”

Hijacking Quadcopters with a MAVLink Exploit

Not many people would like a quadcopter with an HD camera hovering above their property, and until now there’s no technical resource to tell drone pilots to buzz off. That would require actually talking to a person. Horrors. Why be reasonable when you can use a Raspberry Pi to hijack a drone? It’s the only reasonable thing to do, really.

The folks at shellIntel have been messing around with quads for a while, and have recently stumbled upon a vulnerability in the Pixhawk flight controller and every other quadcopter that uses the MAVLink protocol. This includes the Parrot AR.drone, ArduPilot, PX4FMU, pxIMU, SmartAP, MatrixPilot, Armazila 10dM3UOP88, Hexo+, TauLabs and AutoQuad. Right now, the only requirement to make a drone fall out of the sky is a simple radio module and a computer. A Raspberry Pi was used in shellIntel’s demo.

The exploit is a consequence of the MAVLink sending the channel or NetID used to send commands from the transmitter to the quadcopter in each radio frame. This NetID number is used so multiple transmitters don’t interfere with each other; if two transmitters use the same NetID, there will be a conflict and two very confused pilots. Unfortunately, this also means anyone with a MAVLink radio using the same NetID can disarm a quadcopter remotely, and anyone with a MAVLink radio can tell a quad to turn off, or even emulate the DJI Phantom’s ‘Return to China’ function.

The only required hardware for this exploit is a $100 radio and three lines of code. It is certainly possible to build a Raspberry Pi-based box that would shut down any Pixhawk-equipped quadcopter within radio range, although the folks at shellIntel didn’t go that far just yet. Now it’s just a proof of concept to demonstrate that there’s always a technical solution to your privacy concerns. Video below.

Continue reading “Hijacking Quadcopters with a MAVLink Exploit”

Deep Sweep: A Home Made SigInt Platform

Signals Intelligence (SigInt) isn’t something that you normally associate with home hackers, but the Deep Sweep project is looking to change that: it is a balloon platform that captures radio signals in the stratosphere, particularly conversations between drones and satellites. Created by three students at the Frank Ratchye Studio for Creative Inquiry at Carnegie-Mellon, Deep Sweep is a platform that is attached to a balloon and which captures signals over a wide range of frequencies, logging them for later analysis. The current version captures data on three frequency bands: LF/HF (10KHz-30KHz), UHF (650 – 1650MHz) and SHF (10-20GHz). The latter are often the bands used for satellite links between drones and satellites. They are difficult to intercept from the ground, as the signals are directed upwards towards the satellite. By creating a platform that can fly several kilometers above the earth, they are hoping to be able to capture some of this elusive traffic.

So far, the team has made two flights in Europe, both of which encountered technical issues. The first had a battery fault and only captured 10 minutes of data, and the second flew further than expected and ended up in Belarus, a country that isn’t likely to welcome this kind of thing. Fortunately, they were able to recover the balloon and are working on future launches in Europe and the USA. It will be interesting to see how the Department of Homeland Security feels about this.