3D Printed Drone Follows the Leader

[peabody124, aka James] has been active in the drone world for several years now, first with OpenPilot, then TauLabs, and now with his own Spark and Sparky2 boards. [James]’ latest creation is a 3D printed quadcopter using both his Sparky2 board and his Sparky2BGC Brushless Gimbal Controller.

[James] had always wanted a quad which would follow him and his friends while they were having fun, sort of like his own flying camera platform. His current setup is finally approaching that goal. [James] designed his new quadcopter to use his Sparky2 flight controller and the KISS 18 amp Electronic Speed Controller (ESC). He also incorporated a brushless gimbal to keep his Mobius action cam pointed at a whatever the drone may be tracking.

To keep the internal intern-boardslayout clean, [James] designed a power distribution board which solders right up to the ESCs. The internal layout is seriously clean, with flat panels which keep the electronics safe during crashes.

The crash protection turned out to come in handy, as [James] managed to hit a couple of drone-eating trees during testing. Thankfully, having a 3D printed quad means spare parts are just a few hours of printing away. Check out the video below for footage of [James]’ test flights, and of the quad tracking his cell phone via an RF link.

Continue reading “3D Printed Drone Follows the Leader”

Controlling a Block Camera with an RC Transmitter

The world of drones and FPV remote-controlled aircraft is rapidly expanding, airframes are getting bigger, and the demand for even cooler AV gear is higher than ever. [elad] got his hands on a Sony block camera that is able to zoom in on a scene – great if you want to get close to the action while still flying a safe distance away. Controlling the zoom on these cameras is usually done through RS232, but [elad] made it work with an RC transmitter.

The camera [elad] is using is a Sony FCB-EX11D block camera with a standard SD resolution sensor. This camera has 10x optical zoom, making it a great solution to aerial surveillance, the only problem being the RS232 connection and the VISCA protocol. [elad] used an Arduino to listen in on the elevator channel from an RC receiver, translating that to something the camera will understand. The result is a controllable zoom on a camera that could easily take to the skies.

The entire camera package, with Arduino and electronics included, weighs in at about 100 grams. That’s about the same as a GoPro, and would fit perfectly on a camera gimbal. The only problem is getting a transmitter with enough channels or someone else to operate the camera while flying. Video below.

Continue reading “Controlling a Block Camera with an RC Transmitter”

From Nerf Gun to RF Cannon: Building a Movie Prop

[David Windestål] is back in the USA, and this time he’s armed and dangerous! He’s built an incredible RF cannon prop (YouTube link) as part of his drone hunter wardrobe for the Rotor DR1 series. [David] is no stranger to Hackaday. We’ve previously seen him gliding R/C planes from the edge of space and building afterburners as part of the Flite Test crew.

[David’s] drone hunter character is armed with a nasty RF cannon designed to fry drones out of the sky. The hunter can then collect and sell their Arcanum pellet power sources. [David] started with a seriously big Nerf gun. He cut off the front half of the gun and replaced it with a helical antenna. This is the same type of antenna [David] uses in his video ground stations. Coupled with a laser cut wood frame, the coil looks downright dangerous. We’re glad it’s just for show.

[David] added a few more accessories to the gun, including switches, an old heat sink, some wires, and the all-important Arcanum reactor. We seriously love his RF shielded glove, which keeps the hunter’s barrel hand from getting fried. [David] added a layer of copper mesh to a thick chemical resistant glove. He soldered the copper together and added a wire to connect glove and gun. [David] then enlisted the help of DR1 director [Chad Kapper] to paint and weather the gun and shield glove. The results are simply stunning.

We love watching hackers step a bit outside their element and build props like this. They always add a few realistic features that make even the most futuristic sci-fi prop a bit more plausible.

Continue reading “From Nerf Gun to RF Cannon: Building a Movie Prop”

DIY FPV Goggles Born From Necessity of Cheapness

So now that you’ve built your quadcopter and can fly it without crashing most of the time, what’s next? How about metaphorically hopping into the pilot’s seat with a First Person View setup. Great idea… but the cost of the required gear can be a deal breaker. FPV goggles alone range from the low to high hundreds. [sneaky] was using his laptop screen for his FPV setup and decided to try to make is own FPV goggles.

The display is just a small LCD screen that was purchased off eBay. Craft foam board was cut, bent, glued and duct taped to form a box about the same size as the LCD screen which is also secured to the box with duct tape. [sneaky] then cut the opposite side of the box to fit his face before he lined it with 1/2″ weatherstripping foam. Staring at an LCD screen just inches from your face is sure to cause some discomfort. A Fresnel lens inserted in between the user’s eyes and the LCD reduces eye strain to make long flights tolerable. The whole assembly is then held to your noggin via a recycled ski goggle strap.

In the end, [sneaky] likes his new goggles better than his old laptop screen and sun shade setup. The goggles aren’t too heavy and he can wear them comfortably for a while. We’ve seen a DIY FPV goggle setup in the past that uses individual lenses for each eye rather than one large Fresnel lens.

Controlling a Quadcopter with Gestures

[grassjelly] has been hard at work building a wearable device that uses gestures to control quadcopter motion. The goal of the project is to design a controller that allows the user to intuitively control the motion of a quadcopter. Based on the demonstration video below, we’d say they hit the nail on the head. The controller runs off an Arduino Pro Mini-5v powered by two small coin cell batteries. It contains an accelerometer and an ultrasonic distance sensor.

The controller allows the quadcopter to mimic the orientation of the user’s hand. The user holds their hand out in front of them, parallel to the floor. When the hand is tilted in any direction, the quadcopter copies the motion and will tilt the same way. The amount of pitch and roll is limited by software, likely preventing the user from over-correcting and crashing the machine. The user can also raise or lower their hand to control the altitude of the copter.

[grassjelly] has made all of the code and schematics available via github.

Quadrotor Pod Racing

A group of multicopter enthusiasts from Argonay, France cordoned off a path through the forest and spent the day racing. The resulting video makes it look like a heck of a good time.

Twenty “drone” pilots all used first-person view (FPV) camera setups for complete immersion, racing at up to 50 kilometers per hour through a 150m course in the woods that was chosen for maximum thrills and spills. The track basically followed a footpath, but the pilots still had to be extremely alert to avoid natural obstacles (we call them “trees”). The narrator adds that the nearly random lighting and camera artifacts added an extra level of difficulty to the event.

After practicing a few times just to get around the track in one piece, they started racing each other in heats. On the final heat, at 3:40 in the video, five copters start off head-to-head and tear out into the woods. Of them, only two cross the finish line.

FPV drone crash scenes still make us wince a little bit. We wonder how many of the participants spent the next few nights in the repair bay.

Continue reading “Quadrotor Pod Racing”

Flite Test at NYC Maker Faire

NYC Maker Faire may be a no fly zone this year, but that didn’t dampen the spirits of the Flite Test Crew. We met with Flite Test outside their tent in the R/C and drone area of Maker Faire. [Josh Bixler and Alex Zvada] are two of the hosts of the popular YouTube channel. [Josh] is also well-known for his R/C plane designs, such as the Bloody Wonder and Simple Storch. In addition to hosting, [Alex] is the graphic designer Flite Test. He is also an ace quadcopter pilot, and can be found flying his 250 sized chase quad in many episodes.

Most of Flite Test’s designs utilize Readi-Board, available at Dollar-Tree stores around the USA and Canada. The Flite Test crew is working directly with the manufacturer of this foam to make it, and their designs available all over the world.

The team also takes up incredible challenges such as a flying toaster which actually works, making toast as it files. Their flying cinder block is not to be missed either. Their biggest challenge to date was the Google Project Wing + Amazon Prime Air mashup. The video featured a drone that delivered a drone that delivered a drone that delivered a drone that delivered a stick of gum. Matryoshka dolls have nothing on these guys!