GSM remote control with the TiDiGino

tidigino-gsm-remote

If you’re looking to remotely control things around the house, but can’t do it over the Internet or via WiFi, the TiDiGino just might have what you’re looking for. [Boris Landoni] from Open Electronics sent some information on the TiDiGino our way, and it certainly looks like a useful device if you’re in need of a solid GSM remote control module.

At the heart of the TiDiGino lies an ATmega2560, which is normally used in the Arduino Mega, so there’s plenty of processing power to go around. While the form factor differs just a wee bit from what you would expect from an Arduino, the TiDiGino sports all the proper connectivity to support any standard Arduino shield along with the requisite libraries required for use.

Through a contest/community effort, the TiDiGino supports remote alarm, gate control, remote thermostat control, and DTMF remote control functionality right out of the box. We imagine that our readers can dream up a litany of other uses as well, since GSM remote control tends to be pretty popular around here.

Be sure to check out the Open Electronics site if you’re interested in learning more about the TiDiGino – you’ll find a complete BoM along with code and schematics, making it easy to build your own.

Hacked parking disc can be controlled remotely

reverse_engineering_parking_disc

If you have ever traveled around Europe, you are likely familiar with parking discs. Required in many countries that would rather not deal with parking meters, these devices are placed in the front of a car’s window, and indicate when the vehicle was parked. When parking enforcement officers come through the area, it makes quick work of identifying which cars need to be ticketed.

[Michael] received a fancy electronic parking disc as a gift, but the device was incredibly buggy, causing him all sorts of grief. After contacting the manufacturer and receiving no helpful response, he took it upon himself to get things working properly.

He dismantled the disc and found that like many products today, the microprocessors were locked down behind a layer of hard resin. Undeterred, he decided to rebuild it from the ground up using an ATmega microcontroller to provide basic parking disc functionality. He also armed his disc with a GSM modem and a GPS receiver – the former gives him the ability to communicate with the device, while the latter provides accurate time data while allowing him to keep tabs on the car’s location, should the need arise.

The hacked disc’s guts reside in his glove box, and can be controlled using his iPhone, making it easy to tweak his parking time at will.

Check out the video below to see his parking clock in action, and if you have questions on any part of the build, [Michael] says he’s more than happy to fill in any missing details.

[Read more...]

Security system gives you a call when it senses intruders

gsm_motion_detector_alarm_system

[Dimitris] decided to build a homemade alarm system, but instead of triggering a siren, sending an SMS message, or Tweeting about an intrusion, he preferred that his system call him when there was trouble afoot. He says that he preferred a call over text messaging because there are no charges associated with the call if the recipient does not pick up the line, which is not the case with SMS.

The system is based around an off the shelf motion detector that was hacked to work with an old mobile phone. The motion detector originally triggered a siren, but he stripped out the speaker and wired it to a bare bones Arduino board he constructed. The Arduino was in turn connected to the serial port of an unused Ericssson T10s mobile phone. This allows the Arduino to call his mobile phone whenever the motion detector senses movement.

The system looks to be quite useful, and while [Dimitris] didn’t include all of the code he used, he says others should be able to replicate his work without too much trouble.

GPS without GPS

Open Electronics just released a neat little board that can place you on a map without using GPS.

The board works on the basic principles of a cellphone network – the ‘cell’ network is a series of towers that are placed more or less equidistant to each other. Save for the most desolate parts of the country, a cell tower usually communicates with a phone one or two miles away. Usually, several cell towers can be seen, so the position of a cellphone can be pinpointed to within 200-350 feet. Translating cell towers to latitude and longitude is easily done by querying a Google database that was created for the mobile version of Google Maps.

The board itself is a PIC18 microcontroller and a SIM900 GSM module. The firmware available at Open Electronics is pretty impressive – all communication to the board is handled through SMS and the phone can report it’s location to 8 other phones.

It’s pretty impressive to think the same technology that caught [Kevin Mitnick] is now available to the masses. We’re wondering what Hack a Day readers would use this for, so if you have an idea leave a comment.

Send email, receive surveilance picture

This deathstar like ball is actually an autonomous surveillance camera. [Basil] wrote in to tell us about it. The body is custom designed for the project, then 3d printed.  It can be dropped anywhere, as it is battery powered for up to a month,  and communicates via cellar networks.  It checks an email folder once an hour and responds to any requests with a snapshot of what is going on. In the video, which you can see after the break, he gets an immediate response.  You can download the sourcecode as well as the files for the enclosure here.

If you wanted to reduce costs, that case could be done away with, but we suspect it helps with some moderate weather conditioning. We would also love to see a version that rotated around that equator on command for better pictures. Great job [Basil].

[Read more...]

GSM-to-Skype bridge lets you lose those roaming fees

Here’s the scenario: you’re going to be traveling somewhere and you’ll be charged roaming fees if you use your cellphone. But there is free WiFi available in this place. You can save yourself money by leaving your SIM card at home and using a GSM-to-Skype bridge to take calls on your phone via WiFi.

[Trax] is using a USB GSM modem to take cellphone calls on a PC. He leaves his sim card in this modem so that it can make and receive calls and text messages through your normal telephone number. For some reason, the USB connection only provides control of this modem and doesn’t pass bi-directional audio. To make this happen, he built an audio interface cable using two transformers and a few passive components to connect the modem to the computer’s audio card.

On the software side of things, an application written in Delphi 7 manages the modem, the audio stream, and the Skype application. When a call is incoming it sets up a Skype connection with your handset via the Internet, passing along the caller ID data in the process. If you choose to answer the Skype session the application will pick up the GSM call and you’ll be connected. It works the same way when placing an outgoing call.

This seems easier to manage than a rig that physically pushes a cellphone’s buttons via the Internet.

[Thanks Mure]

Real-time GPS tracker with mobile phone uplink

[jayesh] wasn’t actually trying to solve any clever problems when we built his homebrew GPS tracker. He just had the hacker mentality and wanted to build something fun and useful while geeking out with electronics and software.

On the hardware side, he started with an Arduino, then added a GPS module for location detection and a GMS/GPRS module for the data uplink to his server over AT&T’s network. The Arduino uses several libraries and plenty of custom code. On the server, he worked up some wizardry with open-source packages and the Google Maps API. All of the source code and hardware details are well-documented. Put together, it’s a GPS tracker that can update a map in real-time. Sure, there are commercial products that do roughly the same thing, but where’s the fun in that? The principles here can also be put to good use in other microcontroller-based projects.

Follow

Get every new post delivered to your Inbox.

Join 96,376 other followers