Flipped Bit Could Mark The End Of Voyager 1‘s Interstellar Mission

Sometimes it’s hard to read the tea leaves of what’s going on with high-profile space missions. Weighted down as they are with the need to be careful with taxpayer money and having so much national prestige on the line, space agencies are usually pretty cagey about what’s going on up there. But when project managers talk about needing a “miracle” to continue a project, you know things have gotten serious.

And so things now sit with Voyager 1, humanity’s most distant scientific outpost, currently careening away from Mother Earth at 17 kilometers every second and unable to transmit useful scientific or engineering data back to us across nearly a light-day of space. The problem with the 46-year-old spacecraft cropped up back in November, when Voyager started sending gibberish back to Earth. NASA publicly discussed the problem in December, initially blaming it on the telemetry modulation unit (TMU) that packages data from the remaining operable scientific instruments along with engineering data for transmission back to Earth. It appeared at the time that the TMU was not properly communicating with the flight data system (FDS), the main flight computer aboard the spacecraft.

Since then, flight controllers have determined that the problem lies within the one remaining FDS on board (the backup FDS failed back in 1981), most likely thanks to a single bit of corrupted memory. The Deep Space Network is still receiving carrier signals from Voyager, meaning its 3.7-meter high-gain antenna is still pointing back at Earth, so that’s encouraging. But with the corrupt memory, they’ve got no engineering data from the spacecraft to confirm their hypothesis.

The team has tried rebooting the FDS, to no avail. They’re currently evaluating a plan to send commands to put the spacecraft into a flight mode last used during its planetary fly-bys, in the hope that will yield some clues about where the memory is corrupted, if indeed it is. But without a simulator to test the changes, and with most of the engineers who originally built the spacecraft long gone now, the team is treading very carefully.

Voyager 1 is long past warranty, of course, and with an unparalleled record of discovery, it doesn’t owe us anything at this point. But we’re not quite ready to see it slip into its long interstellar sleep, and we wish the team good luck while it works through the issue.

Hackaday Links Column Banner

Hackaday Links: July 9, 2023

Good news this week from Mars, where Ingenuity finally managed to check in with its controllers after a long silence. The plucky helicopter went silent just after nailing the landing on its 52nd flight back on April 26, and hasn’t been heard from since. Mission planners speculated that Ingenuity, which needs to link to the Perseverance rover to transmit its data, landed in a place where terrain features were blocking line-of-sight between the two. So they weren’t overly concerned about the blackout, but still, one likes to keep in touch with such an irreplaceable asset. The silence was broken last week when Perseverance finally made it to higher ground, allowing the helicopter to link up and dump the data from the last flight. The goal going forward is to keep Ingenuity moving ahead of the rover, acting as a scout for interesting places to explore, which makes it possible that we’ll see more comms blackouts. Ingenuity may be more than ten-fold over the number of flights that were planned, but that doesn’t mean it’s ready for retirement quite yet.

Continue reading “Hackaday Links: July 9, 2023”

Engineering For The Long Haul, The NASA Way

The popular press was recently abuzz with sad news from the planet Mars: Opportunity, the little rover that could, could do no more. It took an astonishing 15 years for it to give up the ghost, and it took a planet-wide dust storm that blotted out the sun and plunged the rover into apocalyptically dark and cold conditions to finally kill the machine. It lived 37 times longer than its 90-sol design life, producing mountains of data that will take another 15 years or more to fully digest.

Entire careers were unexpectedly built around Opportunity – officially but bloodlessly dubbed “Mars Exploration Rover-B”, or MER-B – as it stubbornly extended its mission and overcame obstacles both figurative and literal. But “Oppy” is far from the only long-duration success that NASA can boast about. Now that Opportunity has sent its last data, it seems only fitting to celebrate the achievement with a look at exactly how machines and missions can survive and thrive so long in the harshest possible conditions.

Continue reading “Engineering For The Long Haul, The NASA Way”

Flagging Down Aliens With World’s Biggest Laser Pointer

As you’re no doubt aware, humans are a rather noisy species. Not just audibly, like in the case of somebody talking loudly when you’re in a movie theater, but also electromagnetically. All of our wireless transmissions since Marconi made his first spark gap broadcast in 1895 have radiated out into space, and anyone who’s got a sensitive enough ear pointed into our little corner of the Milky Way should have no trouble hearing us. Even if these extraterrestrial eavesdroppers wouldn’t be able to understand the content of our transmissions, the sheer volume of them would be enough to indicate that whatever is making all that noise on the third rock orbiting Sol can’t be a natural phenomena. In other words, one of the best ways to find intelligent life in the galaxy may just be to sit around and wait for them to hear us.

Of course, there’s some pesky physics involved that makes it a bit more complicated. Signals radiate from the Earth at the speed of light, which is like a brisk walk in interstellar terms. Depending on where these hypothetical listeners are located, the delay between when we broadcast something and when they receive it can be immense. For example, any intelligent beings that might be listening in on us from the closest known star, Proxima Centauri, are only just now being utterly disappointed by the finale for “How I Met Your Mother“. Comparatively, “Dallas” fans from Zeta Reticuli are still on the edge of their seats waiting to find out who shot J.R.

But rather than relying on our normal broadcasts to do the talking for us, a recent paper in The Astrophysical Journal makes the case that we should go one better. Written by James R. Clark and Kerri Cahoy,  “Optical Detection of Lasers with Near-term Technology at Interstellar Distances” makes the case that we could use current or near-term laser technology to broadcast a highly directional beacon to potentially life-harboring star systems. What’s more, it even theorizes it would be possible to establish direct communications with an alien intelligence simply by modulating the beam.

Continue reading “Flagging Down Aliens With World’s Biggest Laser Pointer”

Tesseract Infinity Desk

We’ve all seen infinity mirrors. Even Mr. Spock had one in the Star Trek movies. Usually, these aren’t very large and hang on the wall. [QuackMasterDan] decided (after watching another movie, Interstellar) to try making a desk using the same idea. We aren’t sure it will make you more productive, but if you want to up your office cool factor, consider building his tesseract infinity desk. In fact, we imagine it would be pretty distracting. Sure to be a conversation starter, though.

Unlike a regular two-plate infinity mirror, [Dan’s] desk has six plates. He used metal for the structural parts of the desk and the top is a sandwich of an acrylic mirror and a large piece of half-inch tempered glass (available–unsurprisingly–on Amazon). There’s also privacy film to make the glass into a one-way mirror. He also includes instructions on how to make a wood version, too. You can see the desk in a video, below.

Continue reading “Tesseract Infinity Desk”