Eloquent universal receiver for your home entertainment equipment


We’re really starting to enjoy the home entertainment control hacks which use a universal receiver to act on commands from any remote. This one is especially interesting as it uses a single remote to control the system but rolls in lots of extras.

Looking at the receiver itself the white plastic dome of the PIR sensor should raise an eyebrow. Since the cable box takes a while to turn on [Ivan] included the motion sensor to switch that component on when you walk into the room. This way it’ll be ready to go by the time you sit down. It does this by sending IR signals from the PIC32 dev board. Of course the board has its own receiver to listen for the remote control commands. The remote buttons have been mapped a bit differently than originally intended. You can see in the diagram above that the normal VCR/DVD/DVR buttons have been set to control the room’s LED strips. There’s even a power consumption monitor rolled into the project. All of these features are demonstrated in the clip after the break.

This is a nearly perfect base setup. But we’d love to see it with a web interface at some point in the future.

Continue reading “Eloquent universal receiver for your home entertainment equipment”

A real thermal imaging camera for $300

If you want to check your house for hot air leaks, take pictures of the heat coming off a rack of equipment, or just chase the most dangerous animal, [Arnie], through the jungles of central america, a thermal imaging camera is your friend. These devices normally cost a few thousand dollars, but the team behind the Mu Thermal Camera managed to get the price down to about $300.

The basic idea behind the Mu Thermal Camera is overlaying the output of an infrared thermopile – basically, an infrared camera – on top of the video feed of a smart phone’s camera. This is an approach we’ve seen before and something that has even been turned into a successful Kickstarter. These previous incarnations suffered from terrible resolution, though; just 16×4 pixels for the infrared camera. The Mu thermal camera, on the other hand, has 160×120 pixels of resolution. That’s the same resolution as this $2500 Fluke IR camera. After the indiegogo campaign is over, the Mu camera will eventually sell for $325.

We have no idea how the folks behind the Mu camera were able to create a thermal imaging with such exceptional resolution at this price point. The good news is the team will be open sourcing the Mu camera after their indiegogo run is over. W’e’d love to see those docs now, if only to figure out how a thousand dollars of infrared sensor is crammed into a $300 device.

Pair of musical hacks use sensor arrays as keyboards


This pair of musical keyboard hacks both use light to detect inputs. The pair of tips came in on the same day, which sparks talk of consipiracy theory here at Hackaday. Something in the weather must influence what types of projects people take on because we frequently see trends like this one. Video of both projects is embedded after the jump.

On the left is a light-sensitive keyboard which [Kaziem] is showing off. In this image he’s rolling a marble around on the surface. As it passes over the Cadmium Sulfide sensors (which are arranged in the pattern of white and black keys from a piano keyboard) the instrument plays pitches based on the changing light levels. [Thanks Michael via Make]

To the right is [Lex’s] proximity sensor keyboard. It uses a half-dozen Infrared proximity sensor which pick up reflected light. He calls it a ‘quantised theremin’ and after seeing it in action we understand why. The overclocked Raspberry Pi playing the tones reacts differently based on distance from the keyboard itself, and hand alignment with the different sensors.

Continue reading “Pair of musical hacks use sensor arrays as keyboards”

Infra is a television made of Infrared pixels


This television is perfect except for its low resolution and the fact that it can’t be seen by the naked eye. [Chris Shen’s] art installation, Infra, uses 625 television remotes as pixels for a TV screen. There’s a little bit of insight to be gained from the details which [Chris] shared with EMSL.

The remote controls were all throw-aways. Even if there are problems with the buttons, battery connectors, or cases, chances are the IR led in each was still functional. So [Chris] patched into them using about 500 meters of speaker wire.

Why 625 pixel? Because that’s how many LEDs the Peggy board can handle. We’ve seen this open source LED board driving video in other projects. Here it’s been connected to each remote using Molex connectors. Each of the headers has the same pitch as a through-hole 5mm LED. The entire board was filled with them, and a mating crimp connector terminates the end of the wire coming out of each remote. This makes setup quite easy as the remotes don’t have to be installed in any particular order as long as the physical location matches Peggy’s grid.

You can get a glimpse of the piece playing video in the clip after the break.

Continue reading “Infra is a television made of Infrared pixels”

Communication protocol for an indoor helicopter


There’s a special type of satisfaction that comes from really understanding how something works at the end of a reverse engineering project. This grid above is the culmination of [Spencer’s] effort to reverse engineer the IR protocol of a Propel ExecuHeli indoor helicopter toy.

The first thing he looked at was the three different controller channels which can be selected to allow multiple helicopters to be used in the same area. [Spencer] was surprised that they all used the same carrier frequency. The secret must be in the coded packets so his next challenge was to figure out how the data was being transmitted via the Infrared signal. It turns out the packets are using pulse-length coding (we were unfamiliar with this protocol but you can read a bit more about it here). The last piece of the puzzle was to capture packets produced by each unique change of the control module. With each bit (except for bit 11) accounted for he can now format his own codes for a controller replacement. Perhaps he’s looking to make the helicopter autonomous?

Digital IR Theremin

Digital IR Theremin

This Digital IR Theremin creates tones based on the distance of an object from its IR sensor. There’s no microcontroller here, since the project is part of an Introduction to Digital Electronics course. Instead, it uses a handful of comparators, transistors, AND gates, and a 555 timer to make noise.

The comparators are connected to create window comparators. This configuration will output a digital 1 if the input is between two reference voltages, and 0 if it is not. Using this, the analog output of the IR range sensor can be converted to digital values.

The 555 timer takes care of creating the output waveform. A specific resistor is switched in to the timer’s RC circuit depending on which window comparator is active. This allows for a different tone to be played depending on the distance from the IR sensor.

The result is a square wave, which has a frequency dependant on how close an object is to the IR sensor. By selecting the right resistances for each distance, the theremin can be tuned to play a specific scale.

This is a neat project for people looking to learn digital electronics, and the write up does a great job of explaining the theory. After the break, check out a video of the theremin generating some tones.

Continue reading “Digital IR Theremin”

More Fun with Syma 107 Reverse Engineering

Syma Reverse Engineering

[Jim] used a logic analyzer to do some in depth analysis of the Syma 107G helicopter’s IR protocol. We’ve seen work to reverse engineer this protocol in the past, but [Jim] has improved upon it.

Instead of reading the IR output of the controller, [Jim] connected a Saleae Logic directly to the controller’s circuitry. This allowed him to get more accurate timing, which helped him find out some new things about the protocol. He used this to create a detailed explanation of the protocol.

One of the major findings is that the controller used a 3 byte control packet, which contradicts past reverse engineering of the device. There’s also a new explanation of how multiple channels work. This allows multiple helicopters to be flown without the controllers interfering.

The write up is quite detailed, and explains the reverse engineering process. It also provides great information for anyone wanting to hack one of these low cost helicopters. From the details [Jim] worked out, it would be fairly easy to implement the protocol on your own hardware.