Line Following Robot Trains Runners

 

Can your line following robot move faster than [Usain Bolt] who has been described as “The World’s Fastest Timed Human”? Puma, the athletic footwear, apparel and accessories company, created such a robot to help train their company sponsored athletes.

The shoebox-sized robot exceeds [Bolt]’s top speed of 44-km/hour. At that speed, following a line gets tricky. It took the development team 8 prototypes to attain that capability. Inside the BeatBot an Arduino reads 9 infrared sensors for line detection at 100 samples a second. A digital servo controls the Ackerman steering mechanism to follow the line on the track or floor. Wheel encoders provide the data for speed and distance measurement.

The user can set the distance of the run and the time to beat. Run pacing can also be adjusted. LEDs on the robot provide the starting ‘gun’ and help the runner see the BeatBot using peripheral vision. Two GoPro cameras, front and rear, provide a visual record of the run.

Puma believes that actually running against a competitor, even a robot, improves performance more than just running against the clock. They’re betting a grown-up line follower will help Olympic class athletes improve their performance. Continue reading “Line Following Robot Trains Runners”

Forty-Year-Old Arcade Game Reveals Secrets of Robot Path Planning

What’s to be gained from reverse engineering a four-decade-old video game? As it turns out, quite a lot, and as you’ll learn from [Norbert]’s recent talk at the ViennaJS meetup, it’s not just about bringing a classic back to life.

The game in question is Kee Game’s Sprint 2, a monochrome 2D car race that allowed two players to compete head to head. The glorious Harvest Gold and Burnt Orange color scheme just screams 1970s, and it might be hard to see why this game was once a popular quarter-eater. But it was quite engaging for the day, and [Norbert] was interested in reverse engineering it. That he did, using JavaScript to build a faithful browser-based emulation of the game. And he took it further, creating a 3D first-person version of the game.

Continue reading “Forty-Year-Old Arcade Game Reveals Secrets of Robot Path Planning”

String Racing Robots are Here !

This could be the start of a new thing. [HarpDude] showed off his String Car Racers over on the Adafruit forum. It’s like a small model cable car on caffeine. String up enough of them and go head to head racing with others.

A motor with a small pulley runs over a length of string stretched between 2 posts. Below the pulley, acting as a counterweight balance, is the rest of the racer. A Trinket board, motor driver, 9V battery and a pair of long lever micro switches to detect end of travel. The switches also help reverse the motor. A piece of galvanized wire acts as a guide preventing the String Car from jumping off the string. And discovering the benefits of a micro-controller design, as against discrete TTL/CMOS, old timer [HarpDude] added two operational modes via software. “Pong”, where the String Car keeps going back and forth over the string until it stops of (battery) exhaustion. The other mode is “Boomerang” – a single return trip back and forth.

We are guessing the next upgrade would be to add some kind of radio on the car (ESP8266 perhaps) and build an app to control the String Car. That’s when gaming could become fun as it opens up possibilities. One way to improve performance would be to add two “idler” pulleys in line with the main drive pulley, and then snake the string through the three of them. Now you know what to do with all of those old motors you’ve scavenged from tape drives, CD drives and printers. Let the Games begin!

Thanks [Mike Stone] for tipping us off on this.

Making Mario Kart Real

If you’ve ever had a casual go-kart experience, you might be able to relate to [HowToLou]. He noticed that whenever he tried to race, the same situation inevitably always happened. One racer would end up in front of the pack, and no one else would be able to pass them. The result was more of a caravan of go-karts than an actual race. That’s when he realized that video games like Mario Kart had already figured out how to fix this problem long ago. [Lou] took ideas from these games and implemented them onto a real life go-kart in order to improve the experience. The result is what he calls a Flash Kart.

The key to improving the experience was to add more features that you don’t normally get in a real word go-karting experience. The Flash Kart uses an electronic drive system that is controlled by computer. This setup allows the computer to limit the speed of the kart so they are all the same. The system includes a Logitech gaming steering wheel with built-in control buttons. There is also a color LCD screen mounted as a heads up display. The screen displays the racer’s speed in miles per hour, as well as multiple MP3 music tracks to choose from. The system provides the user with a limited number of speed boost tokens, listed on the heads up display. The user can also view their current ranking, their location on the track, or even get a view directly behind them.

The back of the kart includes a 23″ LCD screen that shows other players who you are and what team you are on. For added fun, the rider can display taunting messages to other racers using this screen. The front of the kart includes a laser cannon for shooting other karts as well as a “token scoop” sensor. This allows the riders to pick up virtual items such as laser cannon ammo, shields, or extra speed boost tokens.

To pack in all of this added functionality, [Lou] started with a typical go-kart chassis. From there, he built a custom fiber glass shell for the back-end. This houses most of the sensitive electronics. The system is powered by three 12V deep cycle batteries. A 15HP electric motor drives the rear wheels. The throttle is controlled with a gas pedal that simply feeds to a sensor that is hooked up to the control computer. The heart of the system is a computer that runs on a 2.6Ghz small footprint Zotac motherboard with Windows XP. The software is custom written in C#. The computer is plugged into a miniLAB 1008 interface board. This is how it communicates with all of the various sensors. The interface board is also used to control a number of relays which in turn control the speed of the kart.

Unfortunately [Lou] built this kart years ago and doesn’t include many details about what sensors he is using, or how the software works. Still, this was such a cool idea that we had to share it. Be sure to watch [Lou’s] video below to see the kart in action. Continue reading “Making Mario Kart Real”

Project Binky, Putting a Celica in a Mini The Hard Way

The old Mini – not the new one, mind you – was a fantastic rally car, but fifty odd horsepower won’t get you very far today. The name of the game is souping up a pile of rust from 1980 to create one of the fastest Minis on the planet. That’s the goal of Bad Obsession Motorsport, a project by [Nik Blackhurst], [Richard Brunning], and [Rex Hamilton] as [Abraham Lincoln].

[Nik] has a 1980 Mini 1000, a car-shaped pile of rust. The plan for this multi-year build is to stuff the engine, gearbox, and suspension from a Toyota Celica ST185 GT4 into the old Mini. If you’re wondering, that’s a two liter, turbocharged engine with 200 horsepower and four-wheel drive in a Mini that originally had 50 or 60 horsepower. No, the engine doesn’t fit, but that’s not going to stop these guys.

This isn’t the kind of build you just dive into. Once the guys had the Mini in the garage, a load of measurements were taken from both cars, written down, and the car stripped down. This is not a simple mod, and a few pieces of equipment were custom-made just for this build. The biggest of these is a custom jig the Mini chassis can be bolted down to. This jig gives [Nik] and [Richard] the ability to mount the Mini and engine on rollers, and rotate the entire chassis 90 degrees for easy welding of the underside of the car.

Already there are eight videos covering a year and a half of work, and only now is there a light at the end of the tunnel. Most of the old body panels from the Mini were removed and replaced with reproduction parts. Those parts were quickly ruined with a cutting disk and some custom fabricated panels were put in place. Somehow, it still looks like a Mini but it’s massively strengthened and cut to accommodate the much larger suspension and engine from the Celica.

Grab a cup of coffee (or tea, if you’re into that) and check out the videos below. It’s incredible how much time and work went into this build, and we can’t wait to see the next update in a few months or so.

Continue reading “Project Binky, Putting a Celica in a Mini The Hard Way”

Quadrotor Pod Racing

A group of multicopter enthusiasts from Argonay, France cordoned off a path through the forest and spent the day racing. The resulting video makes it look like a heck of a good time.

Twenty “drone” pilots all used first-person view (FPV) camera setups for complete immersion, racing at up to 50 kilometers per hour through a 150m course in the woods that was chosen for maximum thrills and spills. The track basically followed a footpath, but the pilots still had to be extremely alert to avoid natural obstacles (we call them “trees”). The narrator adds that the nearly random lighting and camera artifacts added an extra level of difficulty to the event.

After practicing a few times just to get around the track in one piece, they started racing each other in heats. On the final heat, at 3:40 in the video, five copters start off head-to-head and tear out into the woods. Of them, only two cross the finish line.

FPV drone crash scenes still make us wince a little bit. We wonder how many of the participants spent the next few nights in the repair bay.

Continue reading “Quadrotor Pod Racing”

Racing telemetry on a cockpit view

ODB

[Martin] has a Lotus Elise and access to a track. Sounds like fun, huh? The only problem is that the dashcam videos he makes are a little bit boring. Sure, they show him flying around the track, but without some sort of data it’s really hard to improve his driving skills. After thinking about it for a while, [Martin] decided he could use his Raspberry Pi and camera module to record videos from the dashboard of his car, and overlay engine data such as RPM, throttle, and speed right on top of the video.

Capturing video is the easy part of this build – [Martin] just connected his Raspi camera module and used the standard raspivid capture utility. Overlaying data on this captured video was a bit harder, though.

[Martin] had previously written about using the Raspi to read OBD-II data into his Raspi. Combine this with a Python script to write subtitles for his movies, and he’s off to the races, with a video and data replay of every move on the track.

The resulting movie and subtitle files can be reencoded to an HD movie. Reencoding a 13 minute HD video took 9 hours on the Raspi. We’d suggest doing this with a more powerful compy, but at least [Martin] has a great solution to fix his slightly uninformative track videos.