Building A Dead-On-Accurate Model Ford Pickup From Scratch

In a world filled with 3D printed this and CNC machined that, it’s always nice to see someone who still does things the old-fashioned way. [Headquake137] built a radio controlled truck body (YouTube link) from wood and polystyrene using just a saw, a Dremel, a hobby knife, and a lot of patience. This is one of those builds that blurs the lines between scale model and sculpture. There aren’t too many pickup trucks one might call “iconic” but if we were to compile a list, the 6th generation Ford F-series would be on it. [Headquake137’s] model is based on a 1977 F100.

ford-thumb2The build starts with the slab sides of the truck. The basic outline is cut into a piece of lumber which is then split with a handsaw to create a left and a right side. From there, [Headquake137’s] uses a Dremel to carve away anything that doesn’t look like a 1977 F100. He adds pieces of wood for the roof, hood, tailgate, and the rest of the major body panels. Small details like the grille and instrument panel are created with white polystyrene sheet, an easy to cut material often used by train and car modelers.

When the paint starts going on, the model really comes to life. [Headquake137] weathers the model to look like it’s seen a long life on the farm. The final part of the video covers the test drive of the truck, now mounted to a custom chassis. The chassis is designed for trails and rock crawling, so it’s no speed demon, but it sure does look the part riding trails out in the woods!

[Headquake137] managed to condense what must have been a 60 or 70 hour build down to a 14 minute video found below.

Continue reading “Building A Dead-On-Accurate Model Ford Pickup From Scratch”

Send In The Drones: Putting Wheels And Wings On The Internet Of Things

Imagine you’re a farmer trying to grow a crop under drought conditions. Up-to-the-minute data on soil moisture can help you to decide where and when to irrigate, which directly affects your crop yield and your bottom line. More sensors would mean more data and a better spatial picture of conditions, but the cost of wired soil sensors would be crippling. Wireless sensors that tap into GSM or some sort of mesh network would be better, but each sensor would still need power, and maintenance costs would quickly mount. But what if you could deploy a vast number of cheap RFID-linked sensors in your fields? And what if an autonomous vehicle could be tasked with the job of polling the sensors and reporting the data? That’s one scenario imagined in a recent scholarly paper about a mobile Internet of Things (PDF link).


In the paper, authors [Jennifer Wang], [Erik Schluntz], [Brian Otis], and [Travis Deyle] put a commercially available quadcopter and RC car to the hack. Both platforms were fitted with telemetry radios, GPS, and an off-the-shelf RFID tag reader and antenna. For their sensor array, they selected passive UHF RFID tags coupled to a number of different sensors, including a resistance sensor used to measure soil moisture. A ground-control system was developed that allowed both the quad and the car to maneuver to waypoints under GPS guidance to poll sensors and report back.

Beyond agriculture, the possibilities for an IoT based on cheap sensors and autonomous vehicles to poll them are limitless. The authors rightly point out the challenges of building out a commercial system based on these principles, but by starting with COTS components and striving to keep installed costs to a minimum, we think they’ve done a great proof of concept here.

Logging Engine Temperature For RC Models

[Rui] enjoys his remote-controlled helicopter hobby and he was looking for a way to better track the temperature of the helicopter’s engine. According to [Rui], engine temperature can affect the performance of the craft, as well as the longevity and durability of the engine. He ended up building his own temperature logger from scratch.

The data logger runs from a PIC 16F88 microcontroller mounted to a circuit board. The PIC reads temperature data from a LM35 temperature sensor. This device can detect temperatures up to 140 degrees Celsius. The temperature sensor is mounted to the engine using Arctic Alumina Silver paste. The paste acts as a glue, holding the sensor in place. The circuit also contains a Microchip 24LC512 EEPROM separated into four blocks. This allows [Rui] to easily make four separate data recordings. His data logger can record up to 15 minutes of data per memory block at two samples per second.

Three buttons on the circuit allow for control over the memory. One button selects which of the four memory banks are being accessed. A second button changes modes between reading, writing, and erasing. The third button actually starts or stops the reading or writing action. The board contains an RS232 port to read the data onto a computer. The circuit is powered via two AA batteries. Combined, these batteries don’t put out the full 5V required for the circuit. [Rui] included a DC-DC converter in order to boost the voltage up high enough.

Hackaday Prize Entry: Recording RC Planes With Third Person View

With the latest advancements in small, cheap video transmitters, it’s no surprise First Person View remote-controlled aircraft are so popular. It’s the easiest way to get into a cockpit without having to spend thousands of dollars and fifty or so hours on a pilot’s license. Despite all the technical challenges of FPV flying, there’s still one underserved part of recording RC aircraft: third person view, or as it’s more commonly called, ‘handing a camcorder to your friend.’

[Walker Eric] would like to do something about that. He’s always wanted nice videos of him flying his plane, and he can’t film and fly at the same time. He can build a robot, though, and that’s his entry for The Hackaday Prize.

[Walker]’s project uses a base station with a camcorder mounted on a gimbal. The electronics for this setup are surprisingly simple – just a GPS beacon transmitting telemetry down to the base station. By comparing this data to a GPS receiver on the ground station, the direction of the plane can be computed.

There are a few problems with this setup. Altitude measurement with GPS isn’t very accurate, so [Walker] is using a pressure sensor as an altimeter on the GPS beacon. The current setup works great, and is a fantastic improvement over the OpenCV setup [Walker] tested out before moving to GPS.

[Walker] already has some incredible video of him flying some planes and quads around his local field shot with this system. You can check those out below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Entry: Recording RC Planes With Third Person View”

Kids Electric Mini Goes Brushless, pops wheelies

[ThatHpiGuy] had a problem. He wasn’t impressed with the performance from his kids’ electric-powered Mini. The 6 volt system was anemic at best, and was just begging for an upgrade. Pulling off the seat and checking the undercarriage, [ThatHpiGuy] realized the motor and gearbox were a perfect fit for the Turnigy 2300 Kv motor from his R/C short course truck. A couple of screws later, car-docuand he had the fastest ride-on toy on the block. Since this was a quick hack, [ThatHpiGuy] kept the truck’s R/C receiver, electronic speed control, and 2 cell LiPo power setup intact. The result is a cooperative system where he controls the throttle via R/C, and his kids control the steering.

That steering is still a bit of an issue though. Like many kid toys, the Mini only has one drive wheel, in this case the right rear. If [ThatHpiGuy] pours on the power a bit too quickly, the single wheel either spins or forces the car into a hard left turn. Aside from that, it looks like both [ThatHpiGuy] and his children are having a ball with this hack. The car will even pop a wheelie from a standing start! You’ve got to see it after the break.

Continue reading “Kids Electric Mini Goes Brushless, pops wheelies”

LED Sign Brightens Up The Beach After Dark

[Warrior_Rocker’s] family bought a fancy new sign for their beach house. The sign has the word “BEACH” spelled vertically. It originally came with blue LEDs to light up each letter. The problem was that the LEDs had a narrow beam that would blind people on the other side of the room. Also, there was no way to change the color of the LEDs, which would increase the fun factor. That’s why [Warrior] decided to upgrade the sign with multi-colored LEDs.

After removing the cardboard backing of the sign, [Warrior] removed the original LEDs by gently tapping on a stick with a hammer. He decided to use WS2811 LED pixels to replace the original LEDs. These pixel modules support multiple colors and are individually addressable. This would allow for a wide variety of colors and animations. The pixels came covered in a weatherproof resin material. [Warrior] baked the resin with a heat gun until it became brittle. He was then able to remove it entirely using some pliers and a utility knife. Finally, the pixels were held in place with some hot glue.

Rather then build a remote control from scratch, [Warrior] found a compatible RF remote under ten dollars. The LED controller was removed from its housing and soldered to the string of LEDs. It was then hot glued to a piece of cardboard and placed into the sign’s original battery compartment. Check out the video below for a demonstration. Continue reading “LED Sign Brightens Up The Beach After Dark”

Hackaday Prize Entry: Density Altitude Gauge

Despite what extraordinarily overpowered quadcopters suggest, the air pressure of whatever a flying machine flys at is extremely important. Pressure is dependent on altitude and temperature, and there are hundreds of NTSB investigations that have concluded density altitude – pressure altitude corrected for nonstandard temperature variations – was the reason for a crash. Normally density altitude is computed through a slide rule or a flight computer, with the pilot entering in altitude and temperature, but somehow accidents still happen. For his entry to The Hackaday Prize, [Neil McNeight] is building an automated density altitude calculator to automate the process entirely.

Instead of having a pilot enter the altitude and temperature into a flight computer manually, [Neil]’s device grabs the current altitude from a GPS unit, and reads the temperature with a tiny sensor acquired from SparkFun. With just a little bit of math, this device will spit out the altitude an airplane or ‘copter thinks it’s at.

While the FAA won’t allow instruments that are cobbled together on a breadboard, this does have a few applications in the RC world. There are extremely high performance racing quadcopters out there now, and knowing how the craft will perform before flying it will save a few props.

The 2015 Hackaday Prize is sponsored by: