Reflective Sensor Becomes Kart Racing Lap Counter

Once you have a track and a kart to race on it, what’s missing? A lap counter that can give your lap times in hardcopy, obviously! That’s what led [the_anykey] to create the Arduino-based Lap Timer to help him and his kids trim those precious seconds off their runs, complete with thermal printer for the results.

The hardware uses an infrared break-beam sensor module (a Velleman PEM10D) to detect when a kart passes by. This module is similar to a scaled-up IR reflective object sensor; it combines an IR emitter and receiver on one end, and is pointed at a reflector placed across the track, up to 10 meters away. When a kart breaks the beam, the module reports the event to the rest of the hardware. Only needing electronics on one side allows the unit to be self-contained.

An obvious shortcoming of this system is the inability to differentiate between multiple karts, but for timing a single driver’s performance it does the trick. What’s great about this project is it showcases how accessible hardware is today; a device like this is possible to put together with what are essentially off-the-shelf components available to any hobbyist, using an Arduino as the glue to hold it together. We’d only comment that a red-tinted piece of plastic as an overlay for the red display (and a grey-tinted one for the green) would make the LED displays much easier to read. Still, this is a very clean and well-documented build. See it in action in the video embedded below.

Continue reading “Reflective Sensor Becomes Kart Racing Lap Counter”

Instant Camera with This Year’s Hottest Dithering Technique

Digital cameras are great, because you can take thousands of pictures without running out of film. But there’s something to be said for having a tangible image you can hold in your hand. The Polaroid cameras of yesteryear were great for this, but now they’re hard to find and the price per photograph is ludicrously expensive.

dither
Dithering allows the camera to print a much better image.

Over the past few years, a few people have sought a way to create printed photographs at a lower cost. One of the best ways to do this is to find something much cheaper than Polaroid film — like thermal paper.

[Fabien-Chouteau]’s thermal printing camera isn’t the first — you’ve got the Gameboy Camera/Printer and a few others to thank for that. But it’s a great example of the form. The camera combines an Adafruit thermal receipt printer with an OpenMV camera, both easily sourced, if not exactly cheap. It even adds a ST7735 LCD for live display of the camera’s image, just like consumer-grade cameras!

It’s not just a slapped together kludge of parts bin components, however. While the thermal printer is only capable of printing black or white pixels, its resolution is much higher than the image from the camera. This allows the camera to use a 3×3 block of printed pixels to represent a single pixel from the camera, and with some fancy dithering techniques, can emulate shades of grey quite effectively. It’s tricks like this that really add polish to a project, and make a big difference to the picture quality at the end of the day.

It’s not the first thermal printer camera we’ve seen – [Ch00f]’s woodgrain instant camera build highlighted the issues of careful camera selection when pursuing this type of build.

Video after the break.

Continue reading “Instant Camera with This Year’s Hottest Dithering Technique”

Towards More Interesting Instant Cameras

When [Ch00f] was getting jeans rung up at Nordstroms, he noticed how fast thermal receipt printers can put an image on a piece of paper. This observation isn’t unique to the circles [Ch00f] frequents – there are a few small receipt paper printers out there that connect to the Internet, iPhones, and a whole bunch of other Kickstarter-friendly keyword devices.

Nevertheless, a device that can make a hard copy of an image quickly and cheaply isn’t something you just stop thinking about. After rolling the concept around in his head for a few years, [Ch00f] finally came up with the perfect build – a camera.

The hardware for the build is based around an STM32F4 Discovery board. It’s a bit overpowered for this sort of application, and this is one of [Ch00f]’s first adventures in ARM-land. The rest of the hardware consists of a thermal receipt printer and a JPEG camera, the latter of which replaced a cellphone CMOS camera module that was lost in a move.

A custom camera requires a custom enclosure, and for this [Ch00f] made something remarkable. The entire enclosure is CNC milled out of a beautiful piece of figured walnut. The end result looks far too good for a prototype, but it does polish up nicely with a bit of linseed oil.

Now [Ch00f] has an instant camera that takes the idea of a Polaroid and turns it into something that produces a print for tenths of a cent. There’s a time-lapse function – just a zip tie on the shutter button – filters with the help of highlighters, and the ability to record movies in flipbook format.

It’s a great project, and also something that will make for a great crowdfunding campaign. [Ch00f] has already started work on this. He already has a sleek, modern-looking website that requires far too much scrolling than should be necessary – the first step to a winning Kickstarter. [Ch00f] also learned a lot about ARMs, DMA, dithering, gamma correction, and the JPEG format, but that’s not going to get anyone to open up their wallet. You know what will? A slick video. You’ll find that below.

Continue reading “Towards More Interesting Instant Cameras”

Electric Imp Thermal Printer

imp_printer_01_23

If you’re the type of person that doesn’t mind having a pocket/purse full of crumpled receipts, then maybe you should check out this tutorial from [tombrew] on giving a thermal printer internet-connectivity.

For some of us, there’s something kind of cool about thermal printers, but it’s probably not the kind of project you’d want to burn a lot of calories on. As a developer over at Electric Imp, [tombrew] agrees with this statement, but since the Electric Imp contains both a WiFi module and processor built in, it makes it pretty easy to get your thermal printer printing off the daily weather, stock prices, news headlines, etc… In fact, the claim here is that you could have this project completed before you even finish your morning coffee… knock on wood!

From a hardware standpoint, the project is pretty straight forward; an Electric Imp with breakout board, thermal printer, and a power supply are pretty much all that’s needed. Local communication between the Electric Imp and the thermal printer is accomplished through a simple serial interface. With the roll-out of the new Electric Imp IDE a few months back, we were introduced to ‘Agents’. This is kind of a neat concept, and this tutorial breaks everything down, but basically the agent is server-side code that runs in the ‘ImpCloud’, thus giving your Electric Imp more power and capabilities to deal with complex APIs. Also, handling images (like something you want to print) can take up a ton of memory, so for this project, the agent is used to send down slices of the image you want to print one at a time. This project is just the beginning of what [tombrew] has planned, so we can’t wait to see more insanely detailed tutorials.

Put in pocket change, get bitcoins

bitcoin

[gbg] put together a neat little project to get people familiarized with Bitcoins. A lot of techies know what Bitcoins are, but the impetus to download the Bitcoin client and start mining is a bit too much for some. [gbg] has a solution for this – a Bitcoin vending machine. Just dump your pocket change in the coin slot, and out comes a QR code that allows you to add Bitcoins to your wallet.

Inside this Bitcoin briefcase is a Raspberry Pi that connects to a local WiFi connection. Every five seconds, the Raspi looks at the current conversion rate of USD to Bitcoins. Once coins are deposited into the briefcase, a receipt complete with a scannable QR code is printed on a small thermal printer.

When [gbg] took this to the latest DEFCON, a lot of people were interested in the project and started shoveling change into the machine. So many people were interested that [gbg] and his compatriots are planning on turning this into a proper open-source device, complete with a bill reader and possibly an ASIC miner so the Pi can sell the coins it produces.

Check out the video below for some more info.

Continue reading “Put in pocket change, get bitcoins”

A visually satisfying tape ticker

This visually stunning tape ticker prints out [Horatius Steam’s] emails for him. It watches his email address for a secret trigger phrase in the subject line. Sure, thermal receipt printer projects are becoming rather common, but we can’t remember seeing one that took this much time and effort to make it into a showpiece.

The two parts that make this happen are the thermal printer with cutter module and the glass dome which is just large enough to house the business end of it. The driver PCB for the printer is hidden in the base (a paper tube which is painted to took like wood), which positions the outfeed near the bottom of the dome. This had the added benefit of leaving plenty of room for [Horatius] to proudly display the paper roll. Since the receipt printer is designed to work with a Windows machine there was no custom circuitry necessary.

Hacking a Brother thermal printer to use non-OEM continuous rolls

You can get your hands on a Brother thermal label printer for $65-75. But if you don’t want to buy the Brother branded continuous feed paper for it you’re out of luck. Unless you pull off this hack which lets you use any thermal paper you want with a Brother QL-500 printer.

The printer is tied to the OEM paper because of a pattern printed on the back of the roll. It’s basically an encoder strip made up of black rectangles spaced at regular intervals. Surely there are other brands that come with this pattern on them, but if you want to use paper without it the secret is in moving the sensor that reads that strip.

The brilliant solution is to use one of the white feed-gears as an encoder wheel. [CheapSkateVideo] used a magic marker to paint two opposite quarters of the gear black. He then removed the optical sensor and placed it on the side of the case facing the wheel. It needs to be adjusted along the radius of that gear until the timing is just right, but once it is you’re ready to go. The sensor is a safety feature to ensure there is media in the printer. If there’s not you can burn up the print head so keep that in mind. See the explanation in the video after the break.

Continue reading “Hacking a Brother thermal printer to use non-OEM continuous rolls”