Hacklet 83 – Tiny Robot Projects

Hackers, makers, and engineers have been hacking on robot projects since the era of clockwork mechanics. Any robot is a cool project, but there is something particularly attractive about small ones. Maybe it’s the skill required to assemble them, or perhaps it’s the low-cost. Either way, there are lots of palm-sized robot projects on Hackaday.io. This week on the Hacklet, we’re going to highlight a few of them!

tinyrobot2We start with the granddaddy of them all, [shlonkin] and Tiny robot family. [Shlonkin] built line following robots that can hide under a US half-dollar coin. The robots are simple circuits – an ATtiny85 with an LED and pair of phototransistors. The code is provided both in Arduino’s wiring, and in straight C++. Two coreless motors, normally used in cell phones vibrators or quadcopters, provide the locomotion. These robots only know one thing – moving forward and following a line. They do it well though! We love this project so much that we hosted a tiny robot workshop at the 10th anniversary back in 2014.

toteWhen it comes to tiny walking robots, [Radomir Dopieralski] is the king. Many of his projects are small biped, quadruped, or even hexapod robots. He’s done things with 9 gram nano servos that we thought were impossible. Tote, an affordable spider robot, is his latest creation. Tote is a four-legged bot utilizing 12 9 gram servos. [Radomir] created a custom PCB for Tote, which acts as a carrier for its Arduino Pro Mini Brain. This robot is easily expandable – [Radomir] has experimented with the Teensy 3 series as well. Controlling the robot can be anything from an ESP8266 to an infrared remote control.

botbot[Alan Kilian] may well have the ultimate tease project with Hand-wound inductors for a tiny robot. [Alan] was using some tiny GM-10 motors on his micro-bot. The motors didn’t have inductance for the locked-antiphase drive controller. His solution was to wind some coils to provide a bit of added inductance. The mod worked, current consumption dropped from 116 ma to about 6 ma. We want to know more about that ‘bot though! It’s controlled by a Megabitty, [Monty Goodson’s] ATmega8 controller board from sometime around 2003. The lilliputian board has been very popular with the nano sumo crowd. Other than the controller, motors, and the plywood frame, [Alan] has left us guessing about his robot. If you see him, tell [Alan] to give us more info on his micro robot’s design and construction!


espbot[Ccates] jumped on the tiny robot bandwagon with Tiny wi-fi robot. Rather than go with an Arduino for control, [Ccates] grabbed the popular ESP-8266 WiFi module. The construction of the bot is inspired by [shlonkin’s] tiny robot family up above. This bot is controlled by the Xtensa processor embedded in the ESP-8266. Since it only drives forward, it only takes two GPIO pins to control the transistors driving the motors. Even the diminutive ESP-01 module has enough I/O for that. We’d love see some sensors and a full H-bridge on this micro beastie!


If you want to see more palm-sized robot projects, check out our new tiny robot projects list! These ‘bots are small, so I may have missed yours. If that’s the case, don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Update on [James’] bipedal robot

From the looks of the latest update [James] has made quite a bit of progress on his bipedal robot. He added to the top of the post just a few days ago, but didn’t include the video link which you’ll find embedded after the break. There’s about ten minutes of explanation before he gets down to demonstrating the static and dynamic balance which can be chosen using the buttons on a TV remote.

We looked in on the project about one year ago. The most notable change is the control electronics anchored in the torso of the robot. At first it makes us a bit nervous that he hasn’t built a protective cage around the components. But after seeing the latest stability demonstration we guess it’s because this thing is fantastic at staying upright. The torso is connected at the hips in such a way that no matter where each leg is it will always remain upright. All together the thing stands twenty-six inches tall, but that will grow when he gets around to building a head for it.

Continue reading “Update on [James’] bipedal robot”

Elder Robots

It’s always nice to show our appreciation for our elders. Today’s young robots may be whippier, snappier, and go-gettier than their forbears but you have to admit that few of them have the moxie to dust themselves off after 45 years and have a walk around town (although it still wouldn’t qualify for a senior’s discount). George, a British humanoid robot made out of a WWII bomber, was resurrected by his inventor after decades in the garage–and all it took was a little bit of oil and some new batteries. Respect.

George is very impressive, but he’s not the oldest robot by any means. Ever-popular Buddha inspired a Japanese robot some 80 years ago that has recently been updated (pics here)–do robots meditate in solid state?

In a similar aesthetic vein to George, Chinese farmer Wu Yulu made a robotic rickshaw driver, one of his many eccentric projects since the 80s.

Here on hackaday we see a lot of modern robotics, but what about a return to the old school? Next time you have a scrap airplane on hand why not weld together a classic robot, and while you’re at it give your regards to old George.

Giant robotic giraffe getting a giant robotic facelift

If you’ve had the opportunity to attend the annual Bay Area Maker Faire, you’ve likely encountered Russell the Electric Giraffe. Modeled after a small Tamiya walking toy scaled up to the height of an actual giraffe, Russell was created by [Lindsay Lawlor] in 2005 originally as an “art car” providing a better vantage point from which to enjoy the Burning Man arts festival. In the intervening five years, the Electric Giraffe has enjoyed face time in dozens of parades, trade shows, magazines and television appearances.

Scattered about [Lawlor’s] living room floor at the moment are the giraffe’s dismantled steel skull and several massive Torxis servos (the red boxes in the photo above) — Russell is being upgraded. One of [Lawlor’s] goals in returning to Maker Faire each year is that he not simply present the same exhibit time and time again; the robot is continually evolving. Initially it was little more than a framework and drivetrain, and had to be steered by bodily shoving the entire 1,700 pound beast. Improvements to the steering and power train followed, along with a “skin” of hundreds of addressable LEDs, cosmetic improvements such as a new paint job, and technological upgrades like interactivity, radio control and speech. His goal this year is to bring expressive animatronic movement to the giraffe’s head and jaw, hence the servos, push rods and custom-machined bits currently strewn through his living space-cum-laboratory.

Continue reading “Giant robotic giraffe getting a giant robotic facelift”