LightBlue Bean+ Adds Battery, Connectors, Price

PunchThrough, creators of the LightBlue Bean, have just launch a Kickstarter for a new version called LightBlue Bean+. The tagline for the hardware is “A Bluetooth Arduino for the Mobile Age” which confirms that the hardware is targeted at a no-hassle, get it connected right now sort of application.

lightblue-bean-plus-thumbFor those unfamiliar, the original LightBlue Bean is a single board offering meant to marry Bluetooth connectivity (think Cellphones with BTLE) to the capabilities of a microcontroller-based hardware interface. The Bean+ augments this hardware with a 300m+ range increase, an integrated LiPo (600mAh or more), and headers/connectors where there were only solder pads before.

On the software side of things the Bean+ has four firmware options that make it speak MIDI, ANCS, HID, or Peer-to-Peer, only not all at the same time. The good news is that these are ecosystem upgrades and will work for existing Bean hardware too. The entire thing comes with online-platform integration and easy to use Smartphone tools to guide you through connecting and making something useful.

The board includes a battery tending circuit that allows it to be charged via the USB port but can run over a year between recharges if you use it judiciously. There is a slider switch near the pin sockets marked “A3, A4, A5” which toggles between 3.3v and 5v so that no level shifters are needed for sensors and other hardware you might use with it. The white connectors seen near the bottom of this image are Grove connectors. These provide I2C and Analog support to that ecosystem of add-on boards.

All in all this is a pretty sweet upgrade. The MSRP will be $45 but early backers can get in around 10-25% less than that. The price doesn’t mean it’s a no-brainer to pick one up, but the header options make this much more versatile and reusable than the original Bean and we like the idea of a rechargeable battery of the coin cells used by Bean+’s predecessor. It is an each choice for drop-in no hassle connectivity when bottom line isn’t your top concern.

Original LightBlue Bean is available in the Hackaday Store.

Tindie Becomes A Part Of The Hackaday Family

A little over two years ago, we announced that Hackaday became a part of Supplyframe. This was a natural fit: both sides are comprised of hardware engineers, computer scientists and hackers alike. We immediately pooled forces and set out to make Hackaday bigger, with a broader mission. So far, it has been an amazing journey: Hackaday.io is approaching 100,000 registered users, The Hackaday Prize is in its second year, and the Hackaday Store is about to fulfill its 5,000th order.

The main theme behind all of this is fostering collaboration, learning, and providing incentives for everyone in the community to stop procrastinating and try to build something amazing. Hackaday.com is here to inspire, Hackaday.io to help develop projects in the open, and the Hackaday Store is to provide a way to turn passion projects into a self-sustainable lifestyle. While the road to community-powered innovation might not be easy, it’s something we’re all incredibly passionate about, and will continue investing in to further this goal.

With that in mind, we’re very excited to announce that everyone’s favorite hardware marketplace – Tindie, has been acquired by Supplyframe and will be joining the Hackaday family! Apart from the fact that most of us are personal fans of the website, we believe that Tindie fills an important gap in helping projects cross the chasm between prototype and initial production. Crowdfunding provides access to capital for some (and access to laughs for others), but it’s not always the way to go. You might not be ready to quit your day job or take on a project full-time. You might be working on rev1 of the project and want to try the “lean manufacturing” thing. Or maybe you’re building something for your own purposes and have some extras lying around. Tindie is a platform that has helped launch many such projects, and we’re incredibly lucky to have it be a part of Hackaday.

Now what?

Naturally, the question that’s on everyone’s mind is, what happens next? Are we going to mess things up? Paint Tindie in black? Change the fee structure? While we have ideas on things that we could help with, our main goal will be making sure that the Tindie community continues to thrive. The only changes we’re interested in are the ones that make the community stronger. We are fascinated with the challenges surrounding the supply chain and will be looking into tools to help sellers improve margins and ship better products. Hackaday.io and Tindie combined represent the world’s largest repository of (working) Open Hardware products, so we will be looking into more closely integrating the two. We will also make efforts to grow the overall Tindie audience, as every new buyer helps move the community forward.

All of these are some of the ideas, but we’re ultimately looking at you for guidance: things we should do, problems we should attack, dreams of future capabilities.

Wish us luck in this new adventure.

Aleksandar Bradic
CTO
Supplyframe

Secrets Of The Lexus Hoverboard Revealed

Auto site [Jalopnik] got some hands-on (or rather feet-on) time with the Lexus hoverboard that was built for an advert for the luxury car brand, and their video reveals a few secrets about how this interesting device works. It is definitely real: the Jalopnik writer got to ride it himself, and described it as “Unbelievably difficult yet at the same time unbelievably cool, both because you’re levitating and because the board is filled with magnets more than 300 degrees below zero“. But a look behind the scenes reveals that it is another tease.

The device looks like it is a real hoverboard, floating several inches above the surface and even traveling over water, a feat that Marty McFly couldn’t do. But, as usual, there is a little more going on than meets the eye. The device is built around superconducting magnets cooled by liquid nitrogen, so it only works for about 10 minutes. After that, you have to refill the device with liquid nitrogen. The surface that the board is floating over also has what the Jalopnik writer describes as having “several hundred thousand dollars worth of magnets built in“. Try this on a non-magnetic surface and you’ll come to a grinding halt. If you watch the video of the hoverboard serenely gliding over the water from another angle, you can see a magnetic track just under the surface. If you run off this track, you’ll end up with wet feet.

Is it a neat hack? Yes. Is it cool? Yes. Is it the future of transportation? No: it is a cool hack put together for a car advert with a big budget. Kudos to Lexus for spending the cash to do it properly, but once again, our dreams of hoverboards are dashed in the cold, hard light of reality. Darn.

 

Robot On Rails For Time Lapse Photography

What do you get when you cross a photographer with an Arduino hacker? If the cross in question is [nukevoid], you wind up with a clever camera rail that can smoothly move with both shift and rotation capability. The impressive build uses an Arduino Pro Mini board and two stepper motors. One stepper moves the device on rails using some Delrin pulleys as wheels that roll on an extruded aluminum track. The other stepper rotates the camera platform.

The rotating platform is very cool. It’s a plastic disk with a GT2 motion belt affixed to the edge. The stepper motor has a matching pulley and can rotate the platform easily. The GT2 belt only goes around half of the disk, and presumably the software knows when to stop on either edge based on step counts. There’s even a support to steady the camera’s lens when in operation.

Continue reading “Robot On Rails For Time Lapse Photography”

Hackaday Prize Entry: 20,000 Weather Stations

Team Tahmo has a plan to put a network of 20,000 weather stations across sub-Saharan Africa. That’s an impressive goal, and already they have pilot stations in Senegal, Chad, Nigeria, Uganda, and South Africa. For their Hackaday Prize entry, they thought it would make sense to add more advanced sensors to their weather stations, and came up with GPS, lightning, and large scale soil moisture sensors.

The sensors already deployed have the usual complement of meteorological equipment – thermometers, anemometers, barometers, and rain gauges. These stations are connected to a school’s Internet connection where students can monitor the local weather patterns and upload the data. Team Tahmo is building a small add-on board for their Prize entry using an AS3935 Franklin Lightning sensor and a GPS module.

In the interests of rapid design cycles, the team is using off-the-shelf modules for the lightning detector and GPS module. They hit up the Hackaday Prize Collabratorium for some advice on PCB design and have everything pretty much nailed down thanks to a few helpful hackers.

It’s a great project for one of the most ambitious crowdsourced data gathering projects ever conceived, and something that would vastly improve weather predictions across the African continent. Even if their entry does just monitor lightning strikes, it’s still an admirable goal and one of the most useful projects for this year’s Hackaday Prize.

The 2015 Hackaday Prize is sponsored by:

No Windows Drivers? Boot Up A Linux VM!

[Voltagex] was fed up with BSODs on his Windows machine due to a buggy PL2303 USB/serial device driver. The Linux PL2303 driver worked just fine, though. A weakling would simply reboot into Linux. Instead, [Voltagex] went for the obvious workaround: create a tiny Linux distro in a virtual machine, route the USB device over to the VM where the drivers work, and then Netcat the result back to Windows.

OK, not really obvious, but a cool hack. Using Buildroot, a Linux system cross-compilation tool, he got the size of the VM down to a 32Mb memory footprint which runs comfortably on even a small laptop. And everything you need to replicate the VM is posted up on Github.

Is this a ridiculous workaround? Yes indeed. But when you’ve got a string of tools like that, or you just want an excuse to learn them, why not? And who can pass up a novel use for Netcat?

Custom Machined Triple Threat Slingshot

Time was when a lad in need of a ranged weapon would hack a slingshot together out of a forked tree branch and a strip of inner tube. Slingshot design has progressed considerably since [Dennis the Menace]’s day, but few commercially available slingshots can match up to the beauty and functionality of this magnificently machined multipurpose handheld weapon system.

Making it clear in his very detailed build log that this is but a prototype for a design he’s working on, [Gord] has spared little effort to come up with a unique form factor that’s not only functional as a slingshot, but also provides a few surprises: a magazine that holds nine rounds of ammo with magnets; knuckle protection on the hand grip that would deal a devastating left hook; and an interchangeable base that provides a hang loop or allows mounting a viciously sharp broadhead hunting arrow tip for somewhat mysterious purposes. There’s plenty to admire in the build process as well – lots and lots of 6061 billet aluminum chips from milling machine and lathe alike. All told, a nice piece of craftsmanship.

For a more traditional slingshot design with a twist, check out this USB-equipped slingshot that talks to Angry Birds. And when your taste in slingshots run more toward the ridiculously lethal, [Jörg Sprave]’s machete launcher never disappoints.

[Thanks Leslie!]