Divide To Conquer Capacitive Touch Problems

Back in the day, all of your music was on a shelf (or in milk crates) and the act of choosing what to listen to was a tangible one. [Michael Teeuw] appreciates the power of having music on demand, but misses that physical aspect when it comes time to “put something on”. His solution is a hardware controller that he calls MusicCubes.

Music cube makes selection using RFID, and touching to the right raises the volume level

This is a multi-part project, but the most recent rework is what catches our eye. The system uses cubes with RFID tags in them for each album. This part of the controller works like a charm, just set the cube in a recessed part of the controller — like Superman’s crystals in his fortress of solitude — and the system knows you’ve made your decision. But the touch controls for volume didn’t work as well. Occasionally they would read a false touch, which ends up muting the system after an hour or so. His investigations led to the discovery that the capacitive touch plates themselves needed to be smaller.

Before resorting to a hardware fix, [Michael] tried to filter out the false positives in software. This was only somewhat successful so his next attempt was to cut the large touch pads into four plates, and only react when two plates register a press at one time.

He’s using an MPR121 capacitive touch sensor which has inputs for up to 12-keys so it was no problem to make this change work with the existing hardware. Surprisingly, once he had four pads for each sensor the false-positives completely stopped. The system is now rock-solid without the need to filter for two of this sub-pads being activated at once. Has anyone else experienced problems with large plates as the touch sensors? Can this be filtered easily or is [Michael’s] solution the common way to proceed? Share your own capacitive touch sensor tips in the comments below!

Want to get a look at the entire project? Start with step one, which includes a table of contents for the other build logs.

A Tetris Clock

We have had no shortage of clock projects over the years, and this one is entertaining because it spells the time out using Tetris-style blocks. The project looks good and is adaptable to different displays. The code is on GitHub and it relies on a Tetris library that has been updated to handle different displays and even ASCII text.

[Brian] wanted to use an ESP8266 development board for the clock, but the library has a bug that prevents it from working, so he used an ESP32 board instead. The board, a TinyPICO, has a breakout board that works well with the display.

Continue reading “A Tetris Clock”

Let The Cards Fall Where They May, With A Robotic Rain Man

Finally,  a useful application for machine vision! Forget all that self-driving nonsense and facial recognition stuff – we’ve finally got an AI that can count cards at the blackjack table.

The system that [Edje Electronics] has built, dubbed “Rain Man 2.0” in homage to the classic title character created by [Dustin Hoffman] for the 1988 film, aims to tilt the odds at the blackjack table away from the house by counting cards. He explains one such strategy, a hi-low count, in the video below, which Rain Man 2.0 implements with the help of a webcam and YOLO for real-time object detection. Cards are detected in any orientation based on their suit and rank thanks to an extensive training set of card images, which [Edje] generated synthetically via some trickery with OpenCV. A script automated the process and yielded a rich training set of 50,000 images for YOLO. A Python program implements the trained model into a real-time card counting application.

Rain Man 2.0 is an improvement over [Edje]’s earlier Tensor Flow card counter, but it still has limitations. It can’t count into a six-deck shoe as the fictional [Rain Man] could, at least not yet. And even though cheater’s justice probably isn’t all cattle prods and hammers these days, the hardware needed for this hack is not likely to slip past casino security. So [Edje] has wisely limited its use to practicing his card counting skills. Eventually, he wants to turn Rain Man into a complete AI blackjack player, and explore its potential for other games and to help the visually impaired.

Continue reading “Let The Cards Fall Where They May, With A Robotic Rain Man”

LEDSpicer Is An Open Source Light Controller For Your Arcade Machine

In this day and age of cheap and easy emulation, it’s more tempting than ever to undertake a home arcade cabinet build. If you want to show off, it’s got to have a light show to really pull the crowds in. To make that easier, [Patricio] put together a software package by the name of LEDSpicer.

The project came about when [Patricio] was working on his Linux-based MAME cabinet, and realised there were limited software options to control his Ultimarc LED board. As the existing solutions lacked features, it was time to get coding.

LEDSpicer runs on Linux only, and requires compilation, but that’s not a huge hurdle for the average MAME fanatic. It comes with a wide variety of animations, as well as tools for creating attract modes and managing LEDs during gameplay. There are even audio-reactive modes available for your gaming pleasure. It’s open source too, so it’s easy to tinker with if there’s something you’d like to add yourself.

It’s a great package that should help many arcade builders out there. LEDs can be used to great effect on a cabinet build; this marquee is a particularly good example. Video after the break.

[Thanks to Guillermo for the tip!]

Continue reading “LEDSpicer Is An Open Source Light Controller For Your Arcade Machine”

Well-Built Sentry Gun Addresses The Menace Of Indoor Micro-UAVs

What is this world coming to when you can’t even enjoy sitting in your living room without some jamoke flying a drone in through the window? Is nothing sacred? Won’t someone think of the children?

Apparently [Drew Pilcher] did, and the result is this anti-drone sentry gun.  It’s a sturdily built machine – one might even say it’s overbuilt. The gimbal is made from machined steel pieces, and the swivels are a pair of Sherline stepper-controlled rotary tables with 1/40 of a degree accuracy selling for $400 each. Riding atop that is a Nerf rifle, which is cocked by a stepper-actuated linear slide, as well as a Kinect for object tracking. The tracking app is a little rough – just OpenCV hacked onto the Kinect SDK – but good enough for testing. The gun tracks as smoothly as one would expect given the expensive hardware, and the auto-cocking feature works well if a bit slowly. Based as it is on Nerf technology, this sentry is only indicated for the control of the micro-drones seen in the snuff video below, but really, anyone afflicted by indoor infestations of Phantoms or Mavics has bigger problems to worry about.

Over-engineered? Perhaps, but it’s better than letting the menace of indoor drones go unanswered. And it’s far from the first sentry gun we’ve seen, targeting everything from cats to squirrels using lasers, paintballs, and even plain water.

Continue reading “Well-Built Sentry Gun Addresses The Menace Of Indoor Micro-UAVs”

Hackaday Superconference: Rob Ryan Silva On Designing For Developing Environments

Throughout the six years of the Hackaday Prize we have seen a stream of projects tackling all manner of applications and challenges. Many of them have a goal of addressing issues faced by people in developing countries, and this was the topic upon which Rob Ryan Silva spoke at the Hackaday Superconference.

Rob’s perspective is an interesting one: he runs the maker lab at Development Alternatives Incorporated, or DAI, who are best described as a specialist contractor in the international development sector. Thus while many of the Prize entrants are hardware hackers who have become involved in development related projects, he is a development specialist who has made the opposite journey to becoming a hardware hacker.

Join me below for the video of Rob’s talk and a deep dive into it. Also of note, tickets for the 2019 Hackaday Superconference are now available, the Call for Proposals is now open, and of course, the 2019 Hackaday Prize is ready for your entry! Okay, now onto Rob’s talk.

Continue reading “Hackaday Superconference: Rob Ryan Silva On Designing For Developing Environments”

Up Your Game With A Battle Tested Input Device

If you’re looking to add some realism to your flight setup without converting the guest bedroom into a full-scale cockpit simulator, you might be interested in the compromise [MelkorsGreatestHits] came up with. He bolted a genuine military keypad to his PC joystick and instantly added 100% more Top Gun to his desktop.

The Rockwell Collins manufactured keypad came from eBay, and appears to have been used in aircraft such as the EA-6B Prowler and Lockheed C-130 Hercules for data input. Each key on the pad is wired to the 37 pin connector on the rear, which [MelkorsGreatestHits] eventually mapped out after some painstaking work with a breakout board.

Once the matrix was figured out, he made up a cable that would go from the connector to a Teensy 2.0 microcontroller. The Teensy reads the keypad status and converts button presses over to standard USB HID that can be picked up in any game.

The joystick side of the build is a VKB Gunfighter, which is already a pretty nice piece of kit on its own. No modifications were necessary to the joystick itself, other than the fact that it’s now mounted to the top of a black project enclosure. It still connects directly to the computer via its original USB cable, as the keypad has its own separate connection. As luck would have it, the joystick is almost a perfect fit in the opening on the keypad, which presumably would have been for a small screen when installed in the aircraft.

Finding cockpit components from military aircraft on eBay is not as hard as you may think; something to keep in mind if you ever decide to tackle that custom flight simulator build.