It’s Pi All The Way Down With This Pi-Powered Pi-Picking Robot

While most of us live in a world where the once ubiquitous Raspberry Pi is now as rare as hens’ teeth, there’s a magical place where they’ve got so many Pis that they needed to build a robotic dispenser to pick Pi orders. And to add insult to injury, they even built this magical machine using a Raspberry Pi. The horror.

This magical place? Australia, of course. There’s no date posted on the Pi Australia article linked above, but it does mention that there’s a Pi 4 Model B running the show, so that makes it at least recent-ish. Stock is stored in an array of tilted bins that a shuttle mechanism accesses via an X-Y gantry. The shuttle docks in front of a bin and uses a stepper-controlled finger to flip a box over the lip holding them in its bin. Once in the shuttle, the order is transported to an array of output bins, where a servo operates a flap to unceremoniously dump the product out for packing and shipping. There’s a video of a full cycle below, but a word of warning — the stepper motors on the X-Y gantry really scream, so you might want to lower the volume.

The article goes into more detail on not only the construction of “Bishop” — named after the heroic synthetic organism from Aliens — but also the challenges faced during construction. It turns out that even when you try to use gravity to simplify a system like this, things can go awry very easily. There’s also a fair bit of detail on the software, which surprisingly centers around LinuxCNC. And there are plans to take this further, with another bot to do the packing, sealing, and labeling of the order. If they need all that automation down there, we guess we found all the missing Pis.

Continue reading “It’s Pi All The Way Down With This Pi-Powered Pi-Picking Robot”

3D Printed String Vase Shows What’s Possible

Overhangs are the bane of the melty-plastic 3D printing world. Often, we try to avoid them with creative print alignments, or we compensate with supports. However, [3DPrintBunny] decided to embrace overhangs in the extreme in the design of her creative 3D-printed string vase.

The design is intended to be printed with a larger nozzle, on the order of 0.8 mm or so, at a layer height of 0.6 mm. Under these conditions, the printer nozzle bridges the gap between the vase’s pillars with a single string of molten filament. With the settings just so, the molten filament stays attached during the bridging operation, and creates a fine plastic string between the pillars. Repeat this across the whole design, and you get an attractive string vase.

Amazingly, [3DPrintBunny] didn’t have to do any fancy slicer tricks to achieve this. Stock slicer settings got the job done just fine, and she reports that the model should print on most FDM printers. For her own examples, she printed in a special silver/bronze dual color PLA filament.

It recalls us of efforts to create synthetic hair-like fibers by taking advantage of stringing in 3D printers. Video after the break. Continue reading “3D Printed String Vase Shows What’s Possible”

Raspberry Pi Grants Remote Access Via PCIe (Sort Of)

[Jeff] found a Raspberry Pi — well, the compute module version, anyway — in an odd place: on a PCI Express card. Why would you plug a Raspberry Pi into a PC? Well, you aren’t exactly. The card uses the PCI Express connector as a way to mount in the computer and connect to the PC’s ground. The Pi exposes its own network cable and is powered by PoE or a USB C cable. So what does it do? It offers remote keyboard, video, and mouse (KVM) services. The trick is you can then get to the PC remotely even if you need to access, say, the BIOS setup screen or troubleshoot an OS that won’t boot.

This isn’t a new idea. In fact, we’ve seen the underlying Pi-KVM software before, so if you don’t mind figuring out your mounting options for a Raspberry Pi, you probably don’t need this board. Good thing too. Judging by the comments, they are hard to actually buy — perhaps, due to the chip shortage.

Continue reading “Raspberry Pi Grants Remote Access Via PCIe (Sort Of)”

Ride-on Star Wars Land Speeder Gets A Real Jet Engine

When it comes to children’s ride-on toys, the Star Wars Land Speeder is one of the cooler examples out there. However, with weedy 12-volt motors, they certainly don’t move quickly. [Joel Creates] decided to fix all that, hopping up his land speeder with a real jet engine.

First, the original drivetrain was removed, with new wheels installed underneath. Initially, it was set up with the front wheels steering, while the rear wheels were left to caster freely. A RC jet engine was installed in the center engine slot on the back of the land speeder, and was controlled via a standard 2-channel RC transmitter.

The jet engine worked, but the wheel configuration led to the speeder simply doing donuts. With the speeder reconfigured with rear wheels locked in place, the speeder handled much more predictably. Testing space was limited to a carpark, so high-speed running was out of the question. However, based on the limited testing achieved, it looks as though the speeder would be capable of a decent clip with the throttle maxed out.

It’s not a practical build, but it sure looks like a fun one. [Joel Creates] has big dreams of adding two more jet engines and taking it out to a runway for high-speed testing, and that’s something we’d love to see.

RC jet engines are a bit of a YouTube fad right now, showing up on everything from RC cars to Teslas. Video after the break.

Continue reading “Ride-on Star Wars Land Speeder Gets A Real Jet Engine”

Open Source: Free As The Air You Breathe

[Carolyn Barber] recently interviewed a 15-year-old who has been making Corsi-Rosenthal boxes for people in his community that are at risk for COVID. Not only is it great that a teenager has such community spirit, but it is also encouraging that [Richard Corsi] and [Jim Rosenthal] made an open-source design that can help people at a greatly reduced cost.

If you haven’t seen one of these boxes, it is essentially a box fan inside a cardboard box with MERV-13 filters on all sides. While these high-quality filters aren’t as efficient as HEPA filters, the box makes up for it by moving a prodigious amount of air and by being much less expensive. The article says you can build a unit for $60 to $100, which is considerably cheaper than other filters with similar performance.

There’s been at least one research paper on the efficacy of the filters and the results were generally quite positive. Schools are taking a great interest in these boxes because they are inexpensive and effective. Of course, the filters don’t last forever, but one of the creators estimates in a classroom with 25 students, a three-year run of the box would run about $4.46 per student per year. Not a lot to pay for clean air.

We love hearing about tech helping people and especially open source that makes big impacts. Usually, when we think of air filtering, we are thinking about laser cutters or 3D printers. However, we have seen inexpensive HEPA filters, too.

Finding Digital Solace In An Old Nokia Phone

We don’t have to tell you that the current mobile phone market is a bit bleak for folks who value things like privacy, security, and open source. While there have been a few notable attempts to change things up, from phone-optimized versions of popular Linux distributions to the promise of modular handsets — we still find ourselves left with largely identical slabs released by a handful of companies which often seem to treat the customer as a product.

Instead of waiting for technological relief that may never come, [vrhelmutt] has decided to take matters into their own hands by looking to the past. Specifically, by embracing the relatively uncommon Nokia Asha 210. Released in 2013, this so-called “feature phone” offers a full QWERTY keyboard, Nokia’s Series 40 operating system, WiFi, Bluetooth, and a removable BL-4U battery. Unfortunately, with 2G cellular networks quickly being shut down, it’s not likely to get a signal for much longer (if at all, depending on where you live).

So why would you want to use some weird old Nokia phone in 2022? [vrhelmutt] argues that there’s a whole world of S40 software out there that can still be put to use, ranging from games to SSH clients. It’s also relatively easy to develop your own S40 applications in Java, with the original software development kit still freely available online. Combined with the solid (if considerably dated) hardware, this makes the Nokia Asha 210 a surprisingly compelling choice for a pocket hacking platform.

Whether you’re looking for a cheap device that will let you chat on IRC from your couch, or want to write your own custom software for controlling your home automation or robotics projects, you might want to check the second-hand market for a Nokia Asha 210. Or if you’re eager to get experimenting immediately, [vrhelmutt] is actually selling these phones pre-loaded with a wide array of games and programs. Don’t consider this to be an official endorsement; frankly we’re not feeling too confident about the legality of redistributing all this software, but at least it’s an option for those looking to get off the modern smartphone thrill-ride.

If you’re looking for something even farther removed from today’s mobile supercomputers, perhaps we could interest you in the Rotary Un-Smartphone.

Continue reading “Finding Digital Solace In An Old Nokia Phone”

IGY: The Year We All Got Along

If you are a Steely Dan fan, you might know the Donald Fagen song, “IGY.” In it, Fagen sings about a rosy future with high-speed undersea rail, solar power, giant computers making life better, and spandex jackets. Since that song was on the 1982 album Nightfly, it is already too old for some people to remember, but the title goes back even further: the International Geophysical Year which was actually a little longer than a year in 1957 and 1958. The year was a concerted effort by 67 countries to further mankind’s knowledge of the Earth. It was successful,  and was big news in its day, although not much remembered now.

The real origin dates back to even earlier. In 1882 and 1932 there were International Polar Years dedicated to researching the polar regions of the Earth. In a way, it makes sense to do this. Why should 60 or more countries each mount difficult, dangerous, and expensive expeditions to such a hostile environment? However, instead of a third polar year, James Van Allen (who has a famous belt) and some other scientists felt that advances in many fields made it the right time to study geophysics. From the scientific point of view, the IGY coincided with the solar activity cycle maximum. But there were other forces at play, too.

Continue reading “IGY: The Year We All Got Along”