Check (or cheques) have long been a standard way for moving money from one bank account to another. They’re essentially little more than a codified document that puts the necessary information in a standard format to ease processing by all parties involved in a given transaction.
The check was once a routine, if tedious, way for the average person to pay for things like bills, rent, or even groceries. As their relevance continues to wane in the face of newer technology, though, the Australian government is making a plan to phase them out for good.
Heating things up is one of the biggest sources of cost and emissions for many industrial processes we take for granted. Most of these factories are running around the clock so they don’t have to waste energy cooling off and heating things back up, so how can you match this 24/7 cycle to the intermittent energy provided by renewables? This MIT spin-off thinks one solution is thermal storage refractory bricks.
Electrified Thermal Solutions takes the relatively simple technology of refractory brick to the next level. For the uninitiated, refractory bricks are typically ceramics with a huge amount of porosity to give them a combination of high thermal tolerance and very good insulating properties. A number of materials processes use them to maximize the use of the available heat energy.
While the exact composition is likely proprietary, the founder’s Ph.D. thesis tells us the bricks are likely a doped chromia (chrome oxide) composition that creates heat in the brick when electrical energy is applied. Stacked bricks can conduct enough current for the whole stack to heat up without need for additional connections. Since these bricks are thermally insulating, they can time shift the energy from solar or wind energy and even out the load. This will reduce emissions and cost as well. If factories need to pipe additional grid power, it would happen at off-peak hours instead of relying on the fluctuating and increasing costs associated with fossil fuels.
If you want to implement thermal storage on a smaller scale, we’ve seen sand batteries and storing heat from wind with water or other fluids.
To anyone who remembers Y2K, Sony’s MiniDisc format will probably always feel futuristic. That goes double for Sony’s MZ-RH1, the last MiniDisk recorder ever released, back in 2006. It’s barely larger than the diminutive disks, and its styling is impeccable. There’s a reason they’ve become highly collectible and sell for insane sums on e-Bay.
Unfortunately, they come with a ticking time-bomb of an Achilles heel: the first-generation OLED screens. Failure is not a question of if, but when, and many units have already succumbed. Fortunately enterprising hacker [Sir68k] has come up with replacement screen to keep these two-decade old bits of the future alive.
Replacement screens glowing brightly, and the custom firmware showing track info, something you’d never see on a stock RH1.
Previous revisions required some light surgery to get the twin OLED replacement screens to fit, but as of the latest incarnation (revision F+), it’s now a 100% drop-in replacement for the original Sony part. While it is a drop-in, don’t expect it to be easy. The internals are very densely packed, and fairly delicate — both in the name of miniaturization. You’ll need to break out the micro-screwdrivers for this one, and maybe some magnifiers if your eyes are as old as ours. At least Sony wasn’t gluing cases together back in 2006, and [Sir68k] does provide a very comprehensive repair guide.
He’s even working on new firmware, to make what many considered best MD recorder better than ever. It’s not ready yet, but when it is [Sir68k] promises to open-source the upgrade. The replacement screens are sadly not open source hardware, but they’re a fine hack nonetheless.