Hydroelectric Generator Gets Power From Siphoning

Siphons are one of those physics phenomena that, like gyroscopes, non-Newtonian fluids, and electricity, seem almost magical. Thanks to atmospheric pressure, simply filling a tube with liquid and placing the end of the tube below the liquid level of a container allows it to flow against gravity, over a barrier, and down into another container without any extra energy inputs once the siphon is started. They’re not just tricks, though; siphons have practical applications as well, such as in siphon-powered hydroelectric turbine.

This is an iteration of [Beyond the Print]’s efforts to draw useful energy from a local dam with an uneconomic amount of water pressure and/or volume for a typical hydroelectric power station. One of his earlier attempts involved a water wheel but this siphon-based device uses a more efficient impeller design instead, and it also keeps the generator dry as well. Using 3″ PVC piping to channel the siphon, as well as a short length of thinner pipe to attach a shop vac for priming the siphon, water is drawn from the reservoir, up the pipe, and then down through the impeller which spins a small DC generator.

This design is generating about 9 V open-circuit, and we’d assume there’s enough power available to charge a phone or power a small microcontroller device. However, there’s a ton of room for improvement here. The major problem [Beyond the Print] is currently experiencing is getting air into the system and having the siphon broken, which he’s solved temporarily by adding a bucket at the outflow. This slows down the water though, so perhaps with any air leaks mitigated the power generation capabilities will be greatly increased.

Continue reading “Hydroelectric Generator Gets Power From Siphoning”

Smallest USB Device… So Far

For better or worse it seems to be human nature to compete with one another, as individuals or teams, rather than experience contentedness while moving to the woods and admiring nature Thoreau-style. On the plus side, competition often results in benefits for all of us, driving down costs for everything from agriculture to medical care to technology. Although perhaps a niche area of competition, the realm of “smallest USB device” seems to have a new champion: this PCB built by [Emma] that’s barely larger than the USB connector pads themselves.

With one side hosting the pads to make contact with a standard USB type-A connector, the other side’s real estate is taken up by a tiny STM32 microcontroller, four phototransistors that can arm or disarm the microcontroller, and a tiny voltage regulator that drops the 5V provided by the USB port to the 3.3V the STM32 needs to operate. This is an impressive amount of computing power for less than three millimeters of vertical space, and can operate as a HID device with a wide variety of possible use cases.

Perhaps the most obvious thing to do with a device like this would be to build a more stealthy version of this handy tool to manage micromanagers, but there are certainly other tasks that a tiny HID can be put to use towards. And, as far as the smallest USB device competition goes, we’d also note that USB-A is not the smallest connector available and, therefore, the competition still has some potential if someone can figure out how to do something similar with an even smaller USB connector.

Thanks to [JohnU] for the tip!

New Frontiers For Nissan Leaf Motor And Battery

Nissan started off with a massive lead in the electric vehicle industry — their Leaf was the first mass-market EV available and the highest-selling EV until 2020. But the company has begun to lag behind other automotive manufacturers and their more diverse, modern offerings. As an example, the Leaf still doesn’t have active cooling for its battery packs. On the plus side, though, these cars are pretty easy to work on and parts for them are widely available. This includes the battery pack and motor, which can be dropped in to other non-EV Nissan products like this Nissan Frontier.

For conversions using the Leaf battery pack and motor, [Paul] points out that it’s important to find the motor with the inverter and power distribution unit all integrated together, rather than sourcing them all separately since they don’t always mix-and-match well. There are several third-party parts available for getting these motors running in other applications, including a coupler to mate the motor to a transmission. However, this still needs some custom fabrication to properly attach to the Frontier’s drivetrain. With a new controller as well, the Frontier engine can be pulled, the Leaf engine dropped in, and the battery set into the bed and connected.

A followup video shows [Paul] driving his new EV down a neighborhood street, but it looks like there are still a few things to polish up before it’s ready to hit the open highway including a more robust housing for the battery. But, if donor vehicles can be found like a truck body and Leaf drivetrain components, this type of modification can be done for a surprisingly small cost. These EV batteries can also be put to work as home power banks as well.

Continue reading “New Frontiers For Nissan Leaf Motor And Battery”

Bit-Banging The USB-PD Protocol

For one-off projects, adding a few integrated circuits to a PCB is not too big of a deal. The price of transistors is extremely low thanks to Moore and his laws, so we’re fairly free to throw chips around like peanuts. But for extremely space-constrained projects, huge production runs, or for engineering challenges, every bit of PCB real estate counts. [g3gg0] falls into the latter group, and this project aims to remove the dedicated USB-PD module from a lighting project and instead bit-bang the protocol with the ESP32 already on the board.

The modern USB power delivery (PD) protocol isn’t quite as simple as older USB ports that simply present a 5V source to whatever plugs itself into the port. But with the added complexity we get a lot more capability including different voltages and greater power handling capabilities. The first step with the PD protocol is to communicate with a power source, which requires a 1.2V 600kHz signal. Just generating the signal is challenging enough, but the data encoding for USB requires level changes to encode bits rather than voltage levels directly. With that handled, the program can then move on to encoding packets and sending them out over the bus.

After everything is said and done, [g3gg0] has a piece of software that lets the ESP32 request voltages from a power supply, sniff and log PD communication, and inject commands with vendor defined messages (VDM), all without needing to use something like a CH224K chip which would normally offload the USB-PD tasks. For anyone looking to save PCB space for whatever reason, this could be a valuable starting point. To see some more capabilities of the protocol, check out this USB-PD power supply that can deliver 2 kW.

Cassette Tape Plays MP3s

Cassette tapes were a major way of listening to (and recording) music througout the 1980s and 1990s and were in every hi-fi stereo, boom box, and passenger vehicle of the era. Their decline was largely as a result of improvements in CD technology and the rise of the MP3 player, and as a result we live in a world largely absent of this once-ubiquitous technology. There are still a few places where these devices crop up, and thanks to some modern technology their capabilities as a music playback device can be greatly enhanced.

The build starts, as one might expect, by disassembling the cassette and removing the magnetic tape from the plastic casing. With the interior of the cassette empty it’s capable of holding a small battery, USB-C battery charger, and a Bluetooth module. The head of an old tape deck can be wired to the audio output of the Bluetooth module and then put back in place in the housing in place of the old tape. With the cassette casing reassembled, there’s nothing left to do but pair it to a smartphone or other music-playing device and push play on the nearest tape deck.

As smartphones continue to lose their 3.5 mm headphone jacks, builds like this can keep lots of older stereos relevant and usable again, including for those of us still driving older vehicles that have functioning tape decks. Of course, if you’re driving a classic antique auto with a tape technology even older than the compact cassette, there are still a few Bluetooth-enabled options for you as well.

Continue reading “Cassette Tape Plays MP3s”

Atari 65XE In Laptop Form

For better or worse, Atari is no longer a household name in computing, but for a time in the 1980s, it was a huge mover in the industry. They not only produced PCs but also a huge number of video game consoles. Although they were a major contributor to the video game crash of the 1980s, they managed to limp along a few more years afterward and produce some interesting machines in the following years, even though they weren’t ultimately able to compete with Nintendo or Sega. One of those computers from that era was a PC-console hybrid of sorts called the Atari XE, and [Sideburn] was able to turn one into a laptop.

The retro laptop began life as an Arabic PAL version of the 65XE, the PC version of the ubiquitous 65-series computer. A large portion of the computer was reworked, including the removal of the power supply in favor of a rechargeable battery with a 6-hour life. Also among the list of scrapped components was the video and sound connectors as well as the RF modulator, which would have been common for displays at the time, but this laptop is getting a 1920×1080 LCD panel to replace all of that old hardware. A 1MB memory upgrade, new speakers and amp, a WiFi card, and an SD floppy card emulator round out the build.

The final part of the build is assembling it all into a custom 3D printed case, and the resulting laptop that [Sideburn] calls the XE Book is a faithful adaptation of this niche computer into what could have been a laptop we would have seen in the late 80s or early 90s similar to the Toshiba T3200SXC. It matches the original’s footprint and still uses all of the core components, so it’s not too difficult to imagine something like this having existed in the past.

Continue reading “Atari 65XE In Laptop Form”

E-Bike Motor Gets New Life As Hydro Plant

For economic reasons, not every lake with a dam can support a hydroelectric power plant. Some rivers or creeks are dammed for flood control or simply for recreation, and don’t have the flow rate or aren’t deep enough to make the investment of a grid-scale generation facility worthwhile. But for those of us with a few spare parts around and access to a small lake, sometimes it’s possible to generate a usable amount of energy with just a bit of effort.

[Beyond the Tint] is building this mostly as a proof-of-concept, starting with a 1,000W hub motor from an e-bike that’s been removed from its wheel. A 3D-printed waterwheel attachment is installed in its place, and the fixed shaft is attached to a homemade ladder-looking mechanism that allows the entire generator to be lowered into the flow of a moving body of water, in this case, a small stream. A bridge rectifier converts the AC from the hub motor (now a generator) into DC, and after a few measurements and trials, [Beyond the Tint] produced over 30W with the first prototype.

A second prototype was made with feedback from the first video he produced, this time with an enclosed paddlewheel. This didn’t appear to make much difference at first, but a more refined impeller may make a difference in future prototypes. Small-scale hydropower is a fairly popular challenge to tackle, especially in the off-grid community. With access to even a small flowing stream and enough elevation change, it’s possible to build something like this generator out of parts from an old washing machine.

Continue reading “E-Bike Motor Gets New Life As Hydro Plant”