$100k To Crack A Bitcoin Wallet

When Bitcoin peaked a few years ago, with single coins reaching around $18,000 USD, heartbreaking stories began circulating about people who had tens or hundreds of coins they mined in the early days when coins were worth just a few dollars or cents. Since then, they owners of these coins had lost the private key, or simply thrown away the drive or computer the coins were on. It’s next to impossible to recover this key in most situations, but for the right amount of money it can sometimes be done.

About 20 years ago, [Mike] was working as a cryptography expert and developed a number of interesting algorithms for breaking various forms of encryption, one of which involved .zip files with poor entropy. A Bitcoin owner stumbled across the paper that [Mike] wrote and realized that it could be a method for recovering his lost key from 2016. [Mike] said it would take a GPU farm and $100,000 USD, but when the owner paid the seemingly enormous price [Mike] was able to recover around $300,000 worth of Bitcoin.

While this might not be financially feasible for you if you have a USB stick with a single coin on it you mined as a curiosity in 2010, the cryptography that is discussed in the blog entry is the real story here. We never know where the solutions to our problems are going to come from, like a random .zip file exploitation from two decades ago, but we can be sure that in the future it will be much easier to crack these keys.

Thanks to [Darmstatium] for the tip!

Bike Lock Secures Car

[Buttim] loses his car a lot, which might sound a little bit like the plot from an early-00s movie, but he assures us that it’s a common enough thing. In a big city, and after several days of not driving one’s car, it can be possible to at least forget where you parked. There are a lot of ways of solving this problem, but the solution almost fell right into his lap: repurposing a lock from a bike share bicycle. (The build is in three parts: Part 2 and Part 3.)

These locks are loaded with features, like GPS, a cellular modem, accelerometers, and in this case, an ARM processor. It took a huge amount of work for [Buttim] to get anything to work on the device, but after using a vulnerability to dump the firmware and load his own code on the device, spending an enormous amount of time trying to figure out where all the circuit traces went through layers of insulation intended to harden the lock from humidity, and building his own Python-based programmer for it, he has basically free reign over the device.

To that end, once he figured out how it all worked, he put it to use in his car. The device functions as a GPS tracker and reports its location over the cellular network so it can’t become lost again. As a bonus, he was able to use the accelerometers to alert him if his car was moving without him knowing, so it turned into a theft deterrent as well. Besides that, though, his ability to get into the device’s firmware reminded us of a recent attempt to get access to an ARM platform.

LIDAR Built On Familiar Platform

Moore’s law may have reached its physical limit for transistor density, but plenty of other technologies are still on that familiar path of getting smaller and smaller as time passes. It looks like LIDAR is no exception to this trend either. This project from [Owen] shows a fully-functional LIDAR system for about $20 and built almost entirely on top of an ESP32.

The build uses a Time-Of-Flight IR laser range sensor controlled by the ESP32, and the sensor is much smaller than even the ESP32’s footprint so it takes up very little extra space. To get it to function as a LIDAR system instead of just a simple rangefinder it does need a motor in order to rotate itself to see its entire space. Besides its small form factor and low cost, it also has a handy user interface that can run anywhere an HTML5 browser can run, making the use of the system easy and straightforward as well. All of the code is available on the project’s GitHub page.

We wouldn’t expect a system like this to be driving an autonomous car anytime soon, it’s update rate is far too slow, but its intent for small robots and even as an educational demo for learning LIDAR is second to none. If you do need a little more power in a LIDAR system but still don’t want to break the bank, we featured this impressive setup a few weeks ago.

Classic Leica Film Camera Turns Digital

While there’s still a market for older analog devices such as vinyl records, clocks, and vacuum-tube-powered radio transmitters, a large fraction of these things have become largely digital over the years. There is a certain feel to older devices though which some prefer over their newer, digital counterparts. This is true of the camera world as well, where some still take pictures on film and develop in darkrooms, but if this is too much of a hassle, yet you still appreciate older analog cameras, then this Leica film camera converted to digital might just attract your focus.

This modification comes in two varieties for users with slightly different preferences. One uses a Sony NEX-5 sensor which clips onto the camera and preserves almost all of the inner workings, and the aesthetic, of the original. This sensor isn’t full-frame though, so if that’s a requirement the second option is one with an A7 sensor which requires extensive camera modification (but still preserves the original rangefinder, an almost $700 part even today). Each one has taken care of all of the new digital workings without a screen, with the original film advance, shutters, and other HIDs of their time modified for the new digital world.

The finish of these cameras is exceptional, with every detail considered. The plans aren’t open source, but we have a hard time taking issue with that for the artistry this particular build. This is a modification done to a lot of cameras, but seldom with so much attention paid to the “feel” of the original camera.

Thanks to [Johannes] for the tip!

Industrial Robot Given New Life And Controller

We all think we could use a third arm from time to time, but when we actually play this thought experiment out in our heads we’ll eventually come to the same hurdle [caltadaniel] found, which is a lack of a controller. His third arm isn’t just an idea, though. It’s a Yaskawa industrial robot that he was able to source for pretty cheap, but it was missing a few parts that he’s been slowly replacing.

The robot arm came without a controller or software, but also without any schematics of any kind, so the first step was reverse engineering the wiring diagram to get an idea of what was going on inside the arm. From there some drivers were built for the servos, but the key to all of it is the homemade controller. The inverse kinematics math was done in Python and runs on an industrial PC. Once it was finally all put together [caltadaniel] had a functioning robotic arm for any task he could think of.

Interestingly enough, while he shows the robot brushing his teeth for him, he also set it up to flip the switch of a useless machine that exists only to turn itself off. There’s something surreal about a massive industrial-sized robotic arm being used to turn on a $20 device which will switch itself back off instantly, but the absurdity is worth a watch.

Continue reading “Industrial Robot Given New Life And Controller”

DIY Closed-Cell Silicone Foam

Most of us have a junk drawer, full of spare parts yanked from various places, but also likely stocked with materials we bought for a project but didn’t use completely. Half a gallon of wood glue, a pile of random, scattered resistors, or in [Ken]’s case, closed-cell silicone foam. Wanting to avoid this situation he set about trying to make his own silicone foam and had a great degree of success.

Commercial systems typically rely on a compressed gas of some sort to generate the foam. Ken also wanted to avoid this and kept his process simple by using basic (pun intended) chemistry to generate the bubbles. A mixture of vinegar and baking soda created the gas. After a healthy amount of trial and error using silicone caulk and some thinner to get the mixture correct, he was able to generate a small amount of silicone foam. While there only was a bit of foam, it was plenty for his needs. All without having a stockpile of extra foam or needing to buy any specialized equipment.

We appreciate this project for the ingenuity of taking something relatively simple (an acid-base reaction) and putting it to use in a way we’ve never seen before. While [Ken] doesn’t say directly on the project page what he uses the foam for, perhaps it or a similar type of foam could be used for building walk-along gliders.

Photo via Wikimedia Commons

Oscilloscope And Microscope Augmented With Ghosts

Augmented reality saw a huge boom a few years ago, where an image of the real world has some virtual element layer displayed on top of it. To get this effect to work, however, you don’t need a suite of software and smart devices. [elad] was able to augment a microscope with the output from an oscilloscope, allowing him to see waveforms while working on small printed circuit boards with the microscope.

The build relies on a simplified version of the Pepper’s Ghost illusion. This works by separating two images with a semi-transparent material such as glass, placed at an angle. When looking through the material, the two images appear to blend together. [elad] was able to build a box that attaches to the microscope with a projection of the oscilloscope image augmented on the view of the microscope.

This looks like it would be incredibly useful for PCBs, especially when dealing with small SMD components. The project is split across two entries, the second of which is here. In one demonstration the oscilloscope image is replaced with a visual of a computer monitor, so it could be used for a lot more applications than just the oscilloscope, too. There aren’t a lot of details on the project page though, but with an understanding of Pepper’s Ghost this should be easily repeatable. If you need more examples, there are plenty of other builds that use this technique.

Continue reading “Oscilloscope And Microscope Augmented With Ghosts”