Reprogrammable Transistors

Not every computer can make use of a disk drive when it needs to store persistent data. Embedded systems especially have pushed the development of a series of erasable programmable read-only memories (EPROMs) because of their need for speed and reliability. But erasing memory and writing it over again, whether it’s an EPROM, an EEPROM, an FPGA, or some other type of configurable solid-state memory is just scratching the surface of what it might be possible to get integrated circuits and their transistors to do. This team has created a transistor that itself is programmable.

Rather than doping the semiconductor material with impurities to create the electrical characteristics needed for the transistor, the team from TU Wien in Vienna has developed a way to “electrostatically dope” the semiconductor, using electric fields instead of physical impurities to achieve the performance needed in the material. A second gate, called the program gate, can be used to reconfigure the electric fields within the transistor, changing its properties on the fly. This still requires some electrical control, though, so the team doesn’t expect their new invention to outright replace all transistors in the future, and they also note that it’s unlikely that these could be made as small as existing transistors due to the extra complexity.

While the article from IEEE lists some potential applications for this technology in the broad sense, we’d like to see what these transistors are actually capable of doing on a more specific level. It seems like these types of circuits could improve efficiency, as fewer transistors might be needed for a wider variety of tasks, and that there are certainly some enhanced security features these could provide as well. For a refresher on the operation of an everyday transistor, though, take a look at this guide to the field-effect transistor.

Documenting Real Hidden Messages In Music

During the 1980s, a moral panic swept across the landscape with the mistaken belief that there were Satanic messages hidden in various games, books, and music that at any moment would corrupt the youth of the era and destroy society as we knew it. While completely unfounded, it turns out that there actually were some hidden messages in vinyl records of the time although they’d corrupt children in a different way, largely by getting them interested in computer science. [Dandu] has taken to collecting these historic artifacts, preserving the music and the software on various hidden recordings.

While it was possible to record only programs or other data to vinyl, much in the same way that cassette tapes can be used as a storage medium, [Dandu]’s research focuses mostly on records, tapes, and CDs which had data included alongside music. This includes not only messages or images, but often entire computer programs. In some cases these programs were meant to be used with the accompanying music, as was the case for The Other Side Of Heaven by Kissing The Pink with a program for the BBC Micro. Plenty of other contemporary machines are represented here too including the ZX Spectrum, Atari, Apple II, and the Commodore 64. The documentation extends through the CD era and even into modern music platforms like Spotify and Apple Music.

The process of extraction and recovery is detailed for each discovery, making it a comprehensive resource for retro computing enthusiasts stretching from the 80s to now. There are likely a few hidden pieces of data out there hidden in various antique storage media that [Dandu] hasn’t found yet, either. You could even make your own records with hidden programs provided you have some musical and programming talents, and a laser engraver for the record itself.

Retro Hackintosh Made From Retro Parts

Apple as a company, has staked most of its future around being a “walled garden” where it controls everything from the hardware up through the user experience. In some ways this is good for users; the hardware is generally high quality and vetted by the company creating the software, making for a very uniform experience. This won’t stop some people from trying to get Apple’s operating systems and other software running on unapproved hardware though. These “Hackintosh” computers were much more common in the Intel era but this replica goes even further back to the Macintosh era.

Originally [Kevin] had ordered an authentic Macintosh with the intent of getting it working again, but a broken floppy disk drive and lack of replacement parts turned this project into a different beast. He used the Mac instead as a model for a new 3D-printed case, spending a ton of time sanding, filling, and finishing it to get it to look nearly indistinguishable from the original. The hardware going in this replica is an old Linux-based thin client machine running the Mini vMac operating system, with a modified floppy drive the computer uses to boot. A hidden SD card slot helps interface with modern computers. The display is a modern LCD, though a sheet of acrylic glued to the front panel replicates a bit of the CRT curve.

Click through to read on!

Continue reading “Retro Hackintosh Made From Retro Parts”

Concrete Clears Its Own Snow

Humans are not creatures well suited to cold environments. Without a large amount of effort to provide clothing, homes, and food to areas with substantial winters, very few of us would survive. The same is true of a lot of our infrastructure since things like ice, frost heave, and large temperature swings can all negatively impact buildings, roadways, and other structures. A team at Drexel University in Pennsylvania has created a type of concrete they hope might solve some issues with the material in cold climates.

Specifically when it comes to sidewalks and roadways, traditional methods of snow and ice removal such as plowing and salting are generally damaging to the surface material, with salting additionally being damaging to vehicles. Freeze-thaw cycles aren’t kind to these surfaces either. This concrete, on the other hand, contains a low-temperature liquid paraffin which releases heat when it has a phase change, from a liquid to a solid. By incorporating the material into the concrete, it can warm itself as temperatures drop, maintaining a temperature above freezing to melt ice and snow. The warming effect isn’t indefinite, but lasts a significant amount of time during testing.

Continue reading “Concrete Clears Its Own Snow”

Generative AI Now Encroaching On Music

While it might not seem like it to a novice, music turns out to be a highly mathematical endeavor with precise ratios between chords and notes as well as overall structure of rhythm and timing. This is especially true of popular music which has even more recognizable repeating patterns and trends, making it unfortunately an easy target for modern generative AI which is capable of analyzing huge amounts of data and creating arguably unique creations. This one, called Suno, does just that for better or worse.

Unlike other generative AI offerings that are currently available for creating music, this one is not only capable of generating the musical underpinnings of the song itself but can additionally create a layer of intelligible vocals as well. A deeper investigation of the technology by Rolling Stone found that the tool uses its own models to come up with the music and then offloads the text generation for the vocals to ChatGPT, finally using the generated lyrics to generate fairly convincing vocals. Like image and text generation models that have come out in the last few years, this has the potential to be significantly disruptive.

While we’re not particularly excited about living in a world where humans toil while the machines create art and not the other way around, at best we could hope for a world where real musicians use these models as tools to enhance their creativity rather than being outright substitutes, much like ChatGPT itself currently is for programmers. That might be an overly optimistic view, though, and only time will tell.

Your Text Needs More JPEG

We’ve all been victims of bad memes on the Internet, but they’re not all just bad jokes gone wrong. Some are simply bad as a result of being copies-of-copies, as each reposter adds another layer of compression to an already lossy image format like JPEG. Compression can certainly be a benefit in areas like images and videos, but [Michal] had a bit of a fever dream imagining this process applied to text. Rather than let the idea escape, he built the Lossifizer to add JPEG-like compression to text.

JPEG compression uses a system similar to the fast Fourier transform (FFT) called the discrete cosine transform (DCT) to reduce the amount of data in an image by essentially removing some frequency information. The data lost is often not noticeable to the human eye, at least until it gets out of hand. [Michal]’s system performs the same transform on text instead, with a slider to control the “amount of JPEG” in the output text. The code for this script uses a “perceptual” character map, clustering similarly-looking and similarly-sounding characters next to each other, resembling “leet speak” from days of yore, although at high enough compression this quickly gets out of hand.

One of the quirks that [Michal] discovered is that certain AI chat bots have a much less difficult time interpreting this JPEG-ified text than a human probably would have, which provides a bit of insight into how some of these algorithms might be functioning under the hood. For some more insight into how JPEG actually works on images, we posted about a deep dive into the image format a while back.

Photoresistors Provide Air Gap Data Transfer, Slowly

One of the simplest ways of keeping a computer system secure is by using an air gap — that is, never actually connecting the system to the network. This can often include other peripherals like USB drives and other removable storage as well, so getting information to and from secure (or compromised) systems behind air gaps can often present a challenge. But assuming you have local access to the computer and your parts bin handy, these optical solutions from [Nikolay] can allow  data transfer to or from such off-line computers.

[Nikolay]’s specific use case for this project is to transfer small amounts of information to or from computers that may be compromised in some way, or computers that might otherwise be dangerous to connect to other equipment. There’s actually several methods described in the project, the first involves temporarily attaching a photoresistor to the computer’s screen which has been wired into the remains of a USB keyboard. A script running on the compromised machine translates data into a series of white and black squares. The sensors can detect these patterns much like playing Duck Hunt on an old CRT television and transmit the data across the air gap with reasonable certainty nothing harmful crossed with it.

Continue reading “Photoresistors Provide Air Gap Data Transfer, Slowly”