Modular Solar-Powered IoT Sensors

Bringing a product to market is not easy, if it were everyone would be doing it, and succeeding. The team at Pycno is in the process of launching their second product, a modular solar powered IoT unit called Pulse. It’s always interesting to get an inside look when a company is so open during the development process, and see how they deal with challenges.

Pycno’s first product was a solar powered sensor suite for crops. This time round they are keeping the solar part, but creating a modular system that can accept wired or wireless connections (2G/3G/4G, WiFi, LoRa, GPS and Bluetooth 5) or modules that slide into the bottom of the unit. They plan to open source the module design to allow other to design custom modules, which is a smart move since interoperability can be a big driving factor behind adoption. The ease of plugging in sensors is a very handy feature, since most non-Hackaday users would probably prefer to not open up expensive units to swap out sensors. The custom solar panel itself is pretty interesting, since it features an integrated OLED display. It consists of a PCB with the cutout for the display, with solar cells soldered on before the whole is laminated to protect the cells.

Making a product so completely modular also has some pitfalls, since it can be really tricky to market something able to do anything for anybody. However, we wish them the best of luck with their Kickstarter (video after the break) and look forward to seeing how the ecosystem develops.

When a large community develops around a modular ecosystem, it can truly grow beyond the originator’s wildest dreams. Just look at Arduino and Raspberry Pi. We’re also currently running a contest involving boards for the Feather form factor if you want to get in on the act. Continue reading “Modular Solar-Powered IoT Sensors”

DIY Lambo That Made The Real Lamborghini Take Notice

When you start sharing your projects with the world, you never know who might take notice. [Sterling Backus] and his son [Xander] have been building a functional Lamborghini Aventador look alike in their garage, and the real Lamborghini company caught wind of it and decided to turn it into an awesome Christmas ad.

Named the AXAS Interceptor by its creators, the car is built from scratch around a custom tubular space frame chassis. Most of the body panels are 3D printed and then skinned with carbon fibre, with a few sheet metal panels mixed in. The interior is mix of parts from other cars and aftermarket components, with 3D printing to pull everything together. The drivetrain consists of an engine from a Corvette, a transaxle from a Porsche 996, with the rest of the chassis components being either aftermarket or custom-fabricated pieces.

[Sterling] got an unexpectedcall from Lamborghini, and they arranged to secretly sneak a real Aventador into the garage in the dead of night to surprise the rest of the family, and let them borrow it for a few weeks. Lamborghini got some marketing out of it, which most people would probably agree is a pretty good deal. We would admit that we’re quite envious.

The car is driveable, but still many hours from being complete. [Sterling] admits that he is no car building professional, but we’re impressed by what he has been able to achieve so far with this ambitious project, and we’re looking forward to the finished product.

If you want to get your feet wet with your first project car, here’s how you pick one.

Continue reading “DIY Lambo That Made The Real Lamborghini Take Notice”

DIY Autonomous Mower In The Wild

Mowing the lawn is one of those repetitive tasks most of us really wish we had a robot for. [Kenny Trussell] mowing needs are a bit more strenuous than most backyards, so he hacked a ride-on mower to handle multi-acre fields all on it’s own.

The mower started out life as a standard zero turn ride on lawn mower. It’s brains consist of a PixHawk board running Ardurover, an Ardupilot derivative for ground vehicles. Navigation is provided by a RTK GPS module that gets error corrections from a fixed base station via an Adafruit LoRa feather board, to achieve centimetre level accuracy. To control the mower, [Kenny] replaced the pneumatic shocks that centred the control levers with linear actuators.

So far [Kenny] has been using the mower to cut large 5-18 acre fields, which would be a very time-consuming job for a human operator. A relay was added to the existing safety circuit that only allows the mower to function when there is weight on the seat. This relay is wired directly to the RC receiver and is controlled from the hand-held RC transmitter. It will also stop the mower if it loses signal to the transmitter. To set up mowing missions, [Kenny] uses the Ardupilot Mission Planner for which he wrote a custom command line utility to create a concentric route for the mower to follow to completely cover a defined area. He has made a whole series of videos on the process, which is very handy for anyone wanting to do the same. We’re looking forward to a new video with all the latest updates.

This mower has been going strong for two years, but in terms of hours logged it’s got nothing on this veteran robotic mower that’s been at it for more than two decades and still runs off an Intel 386 processor.

3D Printable Stick Shift For Your Racing Simulator

If you don’t get enough driving in your real life, you can top it off with some virtual driving and even build yourself a cockpit. To this end [Noctiluxx] created a very nice 3D printable stick shifter you can build yourself.

The design is adapted for 3D printing from an older aluminium version by [Willynovi] over on the X-Simulator forums. Every version uses an off-the-shelf ball joint for the main pivot, below which is a guide plate with the desired shift pattern.  Each position has a microswitch, which can be connected to a USB encoder from eBay which acts as a HID. The position is held in the Y-axis position by a clever spring-loaded cam mechanism above the ball joint, while the X-position is held by the bottom guide plate. The gear knob can be either 3D printed or the real deal of your choice.

This design is the perfect example of the power of the internet and open source. The original aluminium design is almost a decade old, but has been built and modified by a number of people over the years to get us to the easy to build version we see today. [amstudio] created an excellent video tutorial  on how to built your own, see it after the break.

For more awesome cockpits check out this one to fly an actual (FPV) aircraft, and this dazzling array of 3D printable components for your own Garmin G1000 avionics glass cockpit. Continue reading “3D Printable Stick Shift For Your Racing Simulator”

The Ruscombe Gentleman’s Steam Bicycle

Cycling for health and transportation might seem like a good idea, but it unfortunately has the nasty side effect of making you tired. To ease the suffering, many have turned to electric bicycles. But what if you want to really stand out from the crowd? Well then you should look to [Mark Drake] for inspiration, the creator of the beautifully engineered Ruscombe Gentleman’s Steam Bicycle.

[Mark] wanted to create a steam powered bicycle that’s actually usable, instead of just an awkward novelty. To achieve this he made extensive use of modern tech like spreadsheets to model the steam cycle, and CAD for the mechanical design. The engineering design that went into the project really shows in level of refinement of the end product, which is able to comfortably reach 15 mph. Watch the video after the break to see it in action and get all the details.

Petrol is used a fuel source, which is forced to the vaporising burner via air pressure. The fuel is heated by the burner itself to form a vapour before entering the combustion chamber and igniting. The steam generator is a hybrid design, using both mono tube steam generator coils and a small fire tube boiler. This produces superheated steam at over 300 °C, which [Mark] says is key to the bike’s performance. Mineral oil can’t handle the high temperature, so modern synthetic oil is used for lubrication. The steam generator is so well-built that [Mark] managed to get is certified to industrial standards. For safety, it features both a pressure release valve, and a system that automatically shuts of the fuel supply when the steam exceeds a certain pressure. 130 W of power is provided to the wheels by a single cylinder slide valve engine via modern toothed belt. This also drives the air pump to keep the fuel system pressurised, and an adjustable water pump to feed the boiler. Continue reading “The Ruscombe Gentleman’s Steam Bicycle”

Tiny Machine Learning On The Attiny85

We tend to think that the lowest point of entry for machine learning  (ML) is on a Raspberry Pi, which it definitely is not. [EloquentArduino] has been pushing the limits to the low end of the scale, and managed to get a basic classification model running on the ATtiny85.

Using his experience of running ML models on an old Arduino Nano, he had created a generator that can export C code from a scikit-learn. He tried using this generator to compile a support-vector colour classifier for the ATtiny85, but ran into a problem with the Arduino ATtiny85 compiler not supporting a variadic function used by the generator. Fortunately he had already experimented with an alternative approach that uses a non-variadic function, so he was able to dust that off and get it working. The classifier accepts inputs from an RGB sensor to identify a set of objects by colour. The model ended up easily fitting into the capabilities of the diminutive ATtiny85, using only 41% of the available flash and 4% of the available ram.

It’s important to note what [EloquentArduino] isn’t doing here: running an artificial neural network. They’re just too inefficient in terms of memory and computation time to fit on an ATtiny. But neural nets aren’t the only game in town, and if your task is classifying something based on a few inputs, like reading a gesture from accelerometer data, or naming a color from a color sensor, the approach here will serve you well. We wonder if this wouldn’t be a good solution to the pesky problem of identifying bats by their calls.

We really like how approachable machine learning has become and if you’re keen to give ML a go, have a look at the rest of the EloquentArduino blog, it’s a small goldmine.

We’re getting more and more machine learning related hacks, like basic ML on an Arduino Uno, and Lego sortings using ML on a Raspberry Pi.

Steampunk Motorcycle Runs On Compressed Air, Is Pure Hacking Art

Sometimes it’s ok to sacrifice some practicality for aesthetics, especially for passion projects. Falling solidly in this category is [Peter Forsberg]’s beautiful, barely functional steam punk motorcycle. If this isn’t hacker art, then we don’t know what is.

The most eye-catching part of the motorcycle is the engine and drive train, with most of the mechanical components visible. The cylinders are clear glass tubes with custom pistons, seals, valves and push rods. The crank mechanism is from an old Harley and is mounted inside a piece of stainless steel pipe. Because it runs on compressed air it cools down instead of heating up, so an oil system is not needed.

For steering, the entire front of the bike swings side to side on hinges in the middle of the frame, which is quite tricky to ride with a top speed that’s just above walking speed. It can run for about 3-5 minutes on a tank, so the [Peter] mounted a big three-minute hour glass in the frame. The engine is fed from an external air tank, which he wears on his back; he admits it’s borderline torture to carry the thing for any length of time. He plans to build a side-car to house a much larger tank to extend range and improve riding comfort.

[Peter] admits that it isn’t very good as a motorcycle, but the amount of creativity and resourcefulness required to make it functional at all is the mark of a true mechanical hacker. We look forward to seeing it in its final form.

Continue reading “Steampunk Motorcycle Runs On Compressed Air, Is Pure Hacking Art”