A Laser Effect Projector Built With Safety In Mind

There’s just something about wielding a laser pointer on a dark, foggy night. Watching the beam cut through the mist is fun – makes you feel a little Jedi-esque. If you can’t get enough of lasers and mist, you might want to check out this DIY “laser sky” effect projector.

The laser sky effect will probably remind you of other sci-fi movies – think of the “egg scene” from Alien. The effect is achieved by sweeping a laser beam in a plane through swirling smoke or mist. The laser highlights a cross section of the otherwise hidden air currents and makes for some trippy displays. The working principle of [Chris Guichet]’s projector is simplicity itself – an octagonal mirror spun by an old brushless fan motor and a laser pointer. But after a quick proof of concept build, he added the extras that took this from prototype to product. The little laser pointer was replaced with a 200mW laser module, the hexagonal mirror mount and case were 3D printed, and the mirrors were painstakingly aligned so the laser sweeps out a plane. An Arduino was added to control the motor and provide safety interlocks to make sure the laser fires only when the mirror is up to speed. The effect of the deep ruby red laser cutting through smoke is mesmerizing.

If laser sky is a little too one-dimensional for you, expand into two dimensions with this vector laser projector, and if monochrome isn’t your thing try an RGB vector projector.

Continue reading “A Laser Effect Projector Built With Safety In Mind”

Another Kind Of Cloud: The Internet Of Farts

It’s taken as canon that girls mature faster than boys. In reality, what happens is that boys stop maturing at about age 12 while girls keep going. And nothing tickles the fancy of the ageless pre-teen boy trapped within all men more than a good fart joke. To wit, we present a geolocating fart tracker for your daily commute.

[Michel] is the hero this world needs, and although he seems to have somewhat of a preoccupation with hacks involving combustible gasses, his other non-methane related projects have graced our pages before, like this electrical meter snooper or an IoT lawn mower. The current effort, though, is a bit on the cheekier side.

The goal is to keep track of his emissions while driving, so with a PIC, an ESP8266, a GPS module, and a small LCD display and keyboard, he now has a way to log his rolling flatulence. When the urge overcomes him he simply presses a button, which logs his location and speed and allows him to make certain qualitative notes regarding the event. The data gets uploaded to the cloud every Friday, which apparently allows [Michel] to while away his weekends mapping his results.

It turns out that he mainly farts while heading south, and he’s worried about the implications both in terms of polar ice cap loss and how Santa is going to treat him next month. We’re thinking he’s got a lock on coal — or at least activated charcoal.

Our beef with this project is obvious – it relies on the honor system for input. We really need to see this reworked with an in-seat methane detector to keep [Michel] honest. Until then, stay young, [Michel].

Getting A Handle On ESR With A Couple Of DIY Meters

Got a bunch of questionable electrolytic caps sitting in your junk bin? Looking to recap a vintage radio chassis? Then you might need to measure the equivalent series resistance of the capacitors, in which case this simple five-transistor ESR meter might come in handy.

Even if you have no need for an ESR meter, [W2AEW]’s video below is a solid introduction to how ESR is determined. The circuit itself comes from EEVBlog forum user [Jay-Diddy_B] and is about as simple as such a circuit can get. Two transistors form an oscillator that generates a square wave that drives a resistor bridge network. The two legs of the bridge feed matched common-emitter amps, one leg through the device under test. The difference in voltage between the two legs is read on a meter, and you have a quick and simple way to sort through the caps in your junk bin. [Jay-Diddy_B]’s circuit is only presented in breadboard form; no attempt was made to field a practical instrument. Indeed, [W2AEW] already built a home-brew ESR meter using hex inverters and op amps to which he compares the five-transistor circuit’s results. His intention here seems to be to clarify the technique of ESR measurement and evaluate an even simpler circuit than his. We think he’s done a good job on both counts.

We’ve featured plenty of [WA2AEW]’s work before, like this Michigan Mity-Mite transmitter or his primer on oscilloscopes. We really like his laid back style and the way he makes complex topics easy to understand. Check them out.

Continue reading “Getting A Handle On ESR With A Couple Of DIY Meters”

Fun With Fire: Oxy-Acetylene Basics

If generations of Hollywood heist films have taught us anything, it’s that knocking off a bank vault is pretty easy. It usually starts with a guy and a stethoscope, but that never works, so the bad guys break out the cutting torch and burn their way in. But knowing how to harness that raw power means you’ve got to learn the basics of oxy-acetylene, and [This Old Tony]’s new video will get your life of crime off on the right foot.

In another well-produced video, [Tony] goes into quite a bit of detail on the mysteries of oxygen and acetylene and how to handle them without blowing yourself up. He starts with a tour of the equipment, including an interesting look at the internals of an acetylene tank — turns out the gas is stored dissolved in acetone in a porous matrix inside the tank. Working up the hoses, he covers the all-important flashback arrestors, the different styles of torches, and even the stoichiometry of hydrocarbon combustion and how adjusting the oxygen flow results in different flame types for different jobs. He shows how oxy-acetylene welding can be the poor man’s TIG, and finally satisfies that destructive urge by slicing through a piece of 3/8″ steel in under six seconds.

We’ve always wanted a decent oxy-acetylene rig, and [Tony] has convinced us that this is yet another must-have for the shop. There’s just so much you can do with them, not least of which is unsticking corroded fasteners. But if a blue wrench is out of your price range and you still want to stick metal together, you’ll want to learn how to braze aluminum with a propane torch.

Continue reading “Fun With Fire: Oxy-Acetylene Basics”

PLC And Linear Actuators Automate Double-Hung Windows

Very few residential architectural elements lend themselves to automation, with doors and windows being particularly thorny problems. You can buy powered doors and windows, true, but you’ll pay a pretty penny and have to go through an expensive remodeling project to install them. Solving this problem is why this double-hung window automation project caught our eye.

Another reason we took an interest in this project is that [deeewhite] chose to use a PLC to control his windows. We don’t see much love for industrial automation controllers around here, what with the space awash in cheap and easy to use microcontrollers. They have their place, though, and a project like this is a good application for a PLC. But the controller doesn’t matter at all if you can’t move the window, for which task [deeewhite] chose 12V linear actuators. The fact that the actuators are mounted in the center of the window is probably necessary given the tendency of sashes to rack in their frames and jam; unfortunately, this makes for a somewhat unsightly presentation. [deeewhite] also provides the ladder logic for his PLC and discusses how he interfaces his system with Alexa, a WeMo and IFTT.

We’d love to see this project carried forward a bit with actuators hidden under the window trim, or a rack and pinion system built into the window tracks themselves. This is a pretty good start and should inspire work on other styles of windows. While you’re at it, don’t forget to automate the window blinds.

[via r/DIY]

Raspberry Pi Spies On… Err… Monitors Baby

“Quick! We’re having a baby and we need a baby monitor!” Rather than run to the local big box and plunk down cash for an off-the-shelf solution, any self-respecting hacker would rise to the challenge and hit the shop to build something like this live streaming eye-in-the-sky baby camera. Right?

baby-monitor-raspberry-pi-cameraAt least that’s how [Antibore] handled the situation, and the results are pretty good. He designed his build around an old Raspberry Pi 2 that was hanging around. That required a WiFi adapter, and since he wanted video and audio he needed a camera and mic. The first USB mic had a nice compact design but didn’t perform well, so a gutted gooseneck mic soldered right to the USB connector joined the design spec. A camera module, cell-phone quick charge battery bank, and a 3D printed case round out the BOM. A knitted cozy to keep it looking warm and fuzzy was provided by the mother-to-be — although we think it looks a little like [Mike Wazowski].

This self-contained unit will work anywhere it has access to a WiFi network. Mounted on the baby carrier, it’ll provide a live stream to any browser and provide the new parents with a little peace of mind.

There are a lot of baby monitors on the market, some of them terrible and in need of a rebuild. Kudos to [Antibore] for deciding to roll his own custom solution and for getting it done before the blessed event. Now how about painting that nursery?

Better Tornado Warnings With Polygons And Pi

Everyone pays close attention to the weather, but for those who live where tornadoes are prevalent, watching the sky can be a matter of life and death. When the difference between making it to a shelter or getting caught in the open can be a matter of seconds, it might make sense to build an internet enabled Raspberry Pi weather alert system.

We know what you’re thinking – why not just buy an off-the-shelf weather alert radio with Specific Area Message Encoding (SAME) reporting, or just rely on a smartphone app? As [Jim Scarborough] explains, living in the heart of Tornado Alley and having had a brush with tragedy as a kid teaches you not to be complacent with severe weather. He found a problem with the SAME system: lack of locational granularity below the county level, leading to a tendency to over-warn during tornado season. [Jim]’s build seeks to improve SAME by integrating National Weather Service polygon warnings, which define an area likely to see a severe weather event as a collection of geographic vertices rather than a political unit. He’s using a Raspberry Pi NOAA weather radio receiver with SAME decoding, and while details are sparse and the project is ongoing, the idea seems to be to use the Pi to scrape the NWS site for polygon data once a county-level warning is issued.

It’s an interesting idea, and one we’ll be keeping an eye on as [Jim] continues his build. In the meantime, you can brush up on weather radio and SAME encoding with this Arduino SAME decoder.

[via r/weather]