Hands hold a set of white, 3D printed connectors above a wooden table. They look like a cross between a ballpoint pen tip and a spider. The shorter one on the right has yellow, green, black, purple, and white wires coming out the top.

SWD Interface Simplifies Debugging

The proliferation of microcontrollers has made it easier than ever to add some smarts to a project, but sometimes there just isn’t enough space for headers on a board, or you feel a little silly soldering something that will get used to flash a program then languish inside your build. [Dima] wanted to make his boards easier to flash, and developed a PCB footprint and flashing tool pair that makes use of the mounting holes on his boards.

While some debugging tools might use a clamp or tape, [Dima] discovered that using sprung pins only on one side of the connector wedged his fixed locator pin (originally a 1 mm drill bit) into the hole removing the need for any other holding mechanism.

His original prototype worked so well that it took him some time to get back around to making a more reproducible design that didn’t involve fine soldering and superglue. After enlarging the contact pads and several iterations of 3D printing, he developed an interface connector that uses standard jumper wires and a steel rod to provide a sturdy and reliable connection for flashing boards with the corresponding footprint. He’s currently a little disappointed with the overall size of the connector though, and is soliciting feedback on how to make it smaller.

While [Dima]’s MCU of choice is the STM32, but this design should be applicable to any other microcontrollers using a five wire system, or you could take one off for USB. Having trouble finding the SWD points on an existing device? Try this method.

Thanks to [DjBiohazard] for the tip!

Continue reading “SWD Interface Simplifies Debugging”

A man in glasses and a black sweatshirt sits in front of an orange and black computer screen just below eye level at the table in front of him. His keyboard sits on the table below. He appears to be in a park as there are trees and grass in the background.

Flying Lotus Is A Framework-Powered Portable All-in-One Computer

One of the things that we love about the modern era of computing is the increasing ease by which you can roll your own custom computer, as seen with the cyberdeck phenomenon. The Flying Lotus is another awesome build in this vein.

Built around the Framework ecosystem, this device was built to suit the very specific use case of its designer, [Carlos Aldana]. He found himself traveling a lot and that the ergonomics of a laptop left a lot to be desired, especially when in the air. Add to it the fact that he has trouble typing on typical laptop keyboards for any length of time, and you can see how an ergonomic keyboard plus a laptop just doesn’t really work on a tray table.

The Flying Lotus takes the screen, modular ports, and mainboard of a Framework laptop and puts them into a single computing block that can be hung from the clever tabs at the top or mounted on a stand that puts the screen at a more ergonomically ideal height from the work surface. [Aldana] describes it as an “iMac that’s portable.” Since it doesn’t have an integrated keyboard, you can run it with whatever keyboard you like from super duper ergo to a teeny game controller sized unit.

We’ve talked about why we like Framework so much before, and if you’d like another take on a modern portable computer, how about this portable Mac mini?

Continue reading “Flying Lotus Is A Framework-Powered Portable All-in-One Computer”

A very wide beige laptop sits on a wooden table. A hand manipulates a teal ball in a semicircle attached to the right sided of the device. The track ball and hand are outlined in white.

A Trackball Retro Laptop

While track pads and mice dominate the pointing device landscape today, there was a time when track balls were a major part of the scene. In order to really sell the retro chops of his portable computer, [Ominous Industries] designed a clip-on style track ball for his retro Raspberry Pi laptop.

Starting with a half circle shape, he designed the enclosure in Fusion360 to house the guts of a USB trackball. Using the pattern along a path feature of the software, he was able to mimic the groovy texture of the main device on the trackball itself. Flexures in the top of the track ball case with pads glued on actuate the buttons.

We appreciate the honesty of the cuts showing how often the Pi can get grumpy at the extra wide display in this video as well as the previous issues during the laptop build. The bezel around the screen is particularly interesting, being affixed with magnets for easy access when needing to work on the screen.

Retro portables are having a moment. We just covered the Pi Portable 84 and previously saw one inspired by the GRiD Compass . If you’re more interested in trackballs, maybe give this trackball ring or the Ploopy trackball a look?

Continue reading “A Trackball Retro Laptop”

An L-shaped orange mounting structure with two white reservoirs on top, a set of pumps on the outer bottom edges, and a membrane cell bolted together in the center. The parts are connected by a series of transparent tubes.

Open Source Residential Energy Storage

Battery news typically covers the latest, greatest laboratory or industry breakthroughs to push modern devices further and faster. Could you build your own flow battery stationary storage for home-built solar and wind rigs though?

Based on the concept of appropriate technology, the system from the Flow Battery Research Collective will be easy to construct, easy to maintain, and safe to operate in a residential environment. Current experiments are focusing on Zn/I chemistry, but other aqueous chemistries could be used in the future. Instead of an ion exchange membrane, the battery uses readily attainable photo paper and is already showing similar order of magnitude performance to lab-developed cells.

Any components that aren’t off-the-shelf have been designed in FreeCAD. While they can be 3D printed, the researchers have found traditional milling yields better results which isn’t too surprising when you need something water-tight. More work is needed, but it is promising work toward a practical, DIY-able energy storage solution.

If you’re looking to build your own open source wind turbine or solar cells to charge up a home battery system, then we’ve got you covered. You can also break the chains of the power grid with off-the-shelf parts.

A black device with a monochrome LCD sits on a wooden table. It's keyboard extends below the frame. On the screen is the "Level 29" BBS service login.

Internet Appliance To Portable Terminal

Few processors have found themselves in so many different devices as the venerable Z80. While it isn’t powerful by modern standards, you can still use devices like this Cidco MailStation as a terminal.

The MailStation was originally designed as an email machine for people who weren’t onboard with this whole computer fad, keeping things simple with just an adjustable monchrome LCD, a keyboard, and a few basic applications. [Joshua Stein] developed a terminal application, msTERM, for the MailStation thanks to work previously done on decoding this device and the wealth of documentation for Z80 assembly.

While [Stein] designed his program to access BBSes, we wonder if it might be a good way to do some distraction-free writing. If that wasn’t enough, he also designed the WiFiStation dongle which lets you communicate over a network without all that tedious mucking about with parallel ports.

If you’d like something designed specifically for writing, how about an AlphaSmart? Wanting to build your own Z80-based project? Why not start with an Altoids-sized Z80 SBC, but don’t wait forever since Z80 production finally ended in June.

Continue reading “Internet Appliance To Portable Terminal”

A black guitar with red rings on its body is held by a man in a black shirt. Text pointing to the red ring of guitar picks says, "This spins."

1000 Picks Make For A Weird Guitar

String instruments have a long history in civilization, helping humans make more complex and beautiful music. We wonder what our forebears would think of this guitar strummed with 1000 picks?

[Mattias Krantz] wondered what the best number of picks was to play guitar and took the experiment to its illogical extreme. Starting with zero picks and working up through various 3D printed multi-picks he tests all the feasible combinations of handheld picks.

After that, he switches gears to a fishing rod-actuated system of several picks in a ring. Not pleased with the initial acoustics of the picks in this system, he switched to printing his picks in a more flexible filament to better approximate the characteristics of the human thumb. Finally, he takes us to the undiscovered country of a spinning ring of 1000 picks strumming the underside of the strings and the… interesting acoustic result. As many pointed out in the comments, this blurs the line between a guitar and a hurdy gurdy.

If you want more melodic musical mischief, perhaps try this optical guitar pickup, a $30 guitar build, or get fancy with a 3D printed violin?

Continue reading “1000 Picks Make For A Weird Guitar”

A rough cut piece of wood sits on a workbench. A light and a tumbleweed are mounted on top so that the light shines through the tumbleweed. A woman in a ball cap and white tank top is crouched in the background smiling.

Cisco Ball Is The Tumbleweed Opposite Of A Disco Ball

Inspiration can strike a maker at any moment. For [Laura Kampf], it happened in the desert when she saw a tumbleweed.

Tumbleweeds roll through the western United States, hitting cars on the interstate and providing some background motion for westerns. [Kampf] found the plant’s intricate, prickly structure mesmerizing, and decided to turn it into a piece of contemplative kinetic art.

[Kampf] attached the tumbleweed to a piece of wood using epoxy and mounted it to what appears to be a worm drive motor nestled inside an interestingly-shaped piece of wood. As the tumbleweed turns, a light shines through it to project a changing shadow on the wall to “create silence, it creates calmness, it takes away from the noise that surrounds it.” While [Kampf] has some work to do to get the sculpture to its finished state, we can get behind her mantra, “The most important thing about the phase of execution is to get started.”

Are you looking for some projects of your own to help you find calm? How about some ambient lighting, a sand drawing table, or a music player that keeps things simple?

Continue reading “Cisco Ball Is The Tumbleweed Opposite Of A Disco Ball”