Throttle Your Solid Rocket Motors With This One Simple Trick!

For decades, mankind was content to launch payloads into orbit and then watch hundreds of thousands of hours of blood sweat and tears just crash into the ocean. Then, partially because of huge advancements in being able to throttle rocket engines, we started landing our first stage boosters. [Joe] over at the BPS.space YouTube channel is tired of watching SpaceX have all the booster landing fun, but he’s not quite at the throttled liquid engine stage yet. So in the video below the break he asked the question: Can you throttle solid rocket motors? Yes. No. Sort of.

Throttling liquid rocket engines is actually not that different from throttling any other engine- by limiting the amount of fuel and oxidizer. This is challenging all on its own because well… it’s rocket science. With liquid rocket engines though, the concept is at least straightforward. But model rocketry hobbyists only use liquid fueled engines on the extreme high end. The vast majority instead use solid fueled rockets where the fuel is pre-mixed and isn’t variable at all.

These obvious hurdles didn’t stop [Joe] from trying. And trying again. Then, again. And once more for good measure. And then again for repeatability. There are definitely some failures along the way, and we applaud [Joe] for even admitting that he didn’t know how to use a drill properly. Hackers of any age can relate to the time when the didn’t know how to do something, although we also tend to not talk about that part too much.

We won’t spoil the ending except to say that the video is definitely worth a watch to see how [Joe] essentially solves the problem of limiting the effective thrust of a solid rocket engine without actually throttling the engine, and learns about a new issue he’d never seen before.

Of course you can also make rocket engines at home out of a plethora of ingredients, just be sure to do it in somebody else’s kitchen!

Continue reading “Throttle Your Solid Rocket Motors With This One Simple Trick!”

Run Your Own Server For Fun (and Zero Profit)

It seems there’s a service for everything, but sometimes you simply learn more by doing it yourself. If you haven’t enjoyed the somewhat anachronistic pleasures of running your own server and hosting your own darn website, well, today you’re in luck!

Yes, we’re going to take an old computer of some sort and turn it into a web server for hosting all of your projects at home. You could just as easily use a Raspberry Pi –even a Zero W would work — or really anything that’ll run Linux, but be aware that not all computing platforms are created equally as we’ll discuss shortly.

Yes, we’re going to roll our own in this article series. There are a lot of moving parts, so we’re going to have to cover a lot of material. Don’t worry- it’s not incredibly complicated. And you don’t have to do things the way we say. There’s flexibility at every turn, and you’re encouraged to forge your own path. That’s part of the fun!

Note: For the sake of space we’re going to skip over some of the most basic details such as installing Linux and focus on those that have the greatest impact on the project. This article gives a high level overview of what it takes to host your project website at home. It intentionally glosses over the deeper details and makes some necessary assumptions.

Continue reading “Run Your Own Server For Fun (and Zero Profit)”

Reversible Ventilation Hack Keeps The Landlord Happy

When a person owns the home they live in, often the only approval they need for modifications is from their significant other or roommate. In the worst case, maybe a permit is required. But those who rent their dwellings are far more constrained in almost every case, and when it comes to environmental controls, they are most decidedly off limits. Unless you’re a resourceful hacker like [Nik], that is, who has seamlessly integrated his apartment’s ventilation system into his smart home controller — all without any permanent modifications!

The controller itself only gives three settings to vent the apartment: Low, Medium, High, and then High for 30 minutes, with all modes having to be actuated with a manual button press. [Nik] wanted automation and integration with his smart home.

A clean 3D printed enclosure wraps things nicely

Thankfully, the engineers who designed the controller used in [Nik]’s apartment made it very convenient to reverse engineer it. A flat ribbon cable conveniently breaks out all of the buttons and 12 VDC, and he can interface directly using its connector. First hack: done.

Next, [Nik] needed a longer cable to run between the controller and his ESP8266 based control module. Finding the connector on AliExpress was easy, but finding a compatible cable of length required some more resourcefulness. The cable was eventually sourced from the airbag controller of a Renault Megane! Second hack, using a car part in a controller: well done!

Integration into his smart home wasn’t just electronic. The module looks right at home above the original controller, and if you didn’t know better you’d never think it wasn’t original equipment. Final hack: Done!

Be sure to check out his build log over at Hackaday.io, and if home automation hacks are your cup of tea, check out this automatic tea maker.

Haptic Smart Knob Does Several Jobs

A knob is a knob, a switch is a switch, and that’s that, right? And what about those knobs that have detents, set in stone at the time of manufacturing? Oh, and those knobs that let you jog left to right and then snap back to center — that can’t be modified…right? Well, you likely know where this is going, and in the video below the break, [scottbez1] shows off a new open source haptic input knob that can be all of these things with just some configuration changes!

The list of possibilities is long: virtual snap points, virtual spring loading, virtual detents, virtual end points. It’s a virtual smörgåsbord of configuration options that make this haptic smart knob a one stop shop for all of your knob needs. This is all possible because the knob contains a high resolution magnetic encoder chip that has a single degree resolution. The sensor is coupled, through software, to a brushless DC motor. The round LCD gives visual feedback as well.

As [Myself] on the Hackaday Discord channel noted, having configurable spacing and strength for detents, springs, and stops, is nothing short of incredible. Being able to reconfigure the knob at-will means that it can become context sensitive. It’s wonderfully unique and it’s open source, so you can make your own with the information available at GitHub.

And according to its creator, the only thing the Haptic Smart Knob can’t do is do your taxes or blend your margarita. Well, it’s open source, so perhaps some of our more enterprising readers can submit just the right pull request.

This isn’t Hackaday’s first Motorized Volume Knob feature, but it might be one of the neatest we have seen so far. Thanks to [mattvenn] on the Hackaday Discord server for the great tip!

Continue reading “Haptic Smart Knob Does Several Jobs”

Modular Pockit Computer Is More Than Meets The Eye

“Modular” and “Computer” have historically been on the opposite ends of a rather awkward spectrum. One could argue that a hobbyist grade PC is modular, but only to a point. Re-configuring it on the fly is not readily possible. Modular laptops are slowly happening, but what about handheld devices, where our needs might change on a regular basis?

Enter the Pockit: a fully modular IoT/edge computing device that can be reconfigured on the fly without having to reprogram it. Don’t browse away from this page without watching the demonstration video below the break. It just might be the “mother of all demos” for the current decade.

A modular base provides basic computing power in the form of a Raspberry Pi, like many other projects. The base has twelve magnetic connectors, each with twenty I/O and power pins. When a module is added, the operating system detects the new module and loads an appropriate program on the fly. When more modules are loaded, it automatically configures itself so that all modules have a purpose. This allows the Pockit to be an integrated IoT device, an edge computing powerhouse, a desktop computer, a Blackberry-esque handheld, or a touch screen tablet, and so many more things.

For example, if a camera is added, it displays an image on a screen — if there’s  a screen. If a button is added, it automatically takes a picture when the button is pressed. If you want the camera to be motion activated, just add a motion sensor. Done. External devices can be controlled with relays and home automation integrates almost seamlessly.

There are a great number of features that we’re glossing over for the sake of getting to the point: Go watch the video and when you’re done, perhaps you’ll be as astonished as we are. We’ve expressed our love of modular hardware like the Pockit in the past, and after watching this demo, we can only hope that this is what the future of computing and electronics looks like!

Continue reading “Modular Pockit Computer Is More Than Meets The Eye”

There’s More In A Cardboard Box Than What Goes In The Cardboard Box

The cardboard box is ubiquitous in our society. We all know what makes up a cardboard box: corrugated paper products, glue, and some work. Of course cardboard boxes didn’t just show up one day, delivered out of nowhere by an overworked and underpaid driver. In the video below the break, [New Mind] does a deep dive into the history of the cardboard box and much more.

Starting back in the 19th century, advancements in the bulk processing of wood into pulp made paper inexpensive. From there, cardboard started to take its corrugated shape. Numerous advancements around Europe and the US happened somewhat independently of each other, and by 1906 a conglomerate was formed to get the railroads to approve cardboard for use on cargo trains.

By then though, cardboard was still in its infancy. Further advancements in design, manufacturing, and efficiency have turned the seemingly low tech cardboard box into a high tech industry that’s heavy on automation and quality control. It’ll certainly be difficult to think of cardboard boxes the same.

There also numerous ways for a hacker to re-use cardboard, be it in template making, prototyping, model making, and more. Of course, corrugation isn’t just for paper. If corrugated plastic floats your boat, you might be interested in this boat that floats due to corrugated plastic.

Continue reading “There’s More In A Cardboard Box Than What Goes In The Cardboard Box”

The Hunt For The Voice Of Utah’s Arches

Double O Arch. Click to hear!

In the 1990 movie The Hunt For Red October, a stealth submarine is located by what a computer thinks are seismic sounds, but when sped up, they are clearly mechanical. We won’t spoil it further on the off chance that you haven’t seen. We can’t help but wonder if [Prof. Jeff Moore] and his team at the University of Utah were inspired by the movie. Why so? Because they have taken the seismic vibrations of the beautiful arches in Utah, US and sped them up 25 times, placing them right in the range of human hearing on their Red Rock Tones website. Go have a quick listen. We’ll be right here.

The resulting sound bites are just beautiful, and some of them have an almost eerie underwater tone to them as if driven along by a clandestine propulsion system. But that might just be our imagination running away a bit. That’s likely the point of this scientific exercise, however- taking raw scientific data and making it accessible and somehow relevant to even non-geologists.

The Dynamics of Rock Arches All Images Courtesy Prof Jeff Moore

[Prof Moore] and his team aren’t just placing seismometers on natural rock arches for the fun of it, even though that does sound like some fun. Instead, they are studying the natural resonances of these rock formations- both the primary frequencies and the harmonics. By monitoring changes in their resonant frequencies over time, they gain an understanding of how the rock is changing- especially as it relates to the impact that humans have on these natural wonders.

What’s more, these audible representations of seismic waves are something that may be possible for the determined hacker. We’ve featured several DIY seismometers such as this hacked USB mouse designed to detect elephants on the move. Could it be sensitive enough for measuring seismic activity? Try it out, and let us know!

Special thanks to [Prof. Jeff Moore] for permission to use the images for this article.