AvoRipe Takes A Firm Grip On The Ultimate First World Food Problem

You don’t have to be an extinct mammal or a Millennial to enjoy the smooth, buttery taste of an avocado. Being psychic on the other hand is definitely an advantage to catch that small, perfect window between raw and rotten of this divaesque fruit. But don’t worry, as modern problems require modern solutions, [Eden Bar-Tov] and [Elad Goldberg] built the AvoRipe, a device to notify you when your next avocado has reached that window.

Taking both the firmness and color of an avocado as indicators of its ripeness into account, the team built a dome holding a TCS3200 color sensor as stand for the avocado itself, and 3D printed a servo-controlled gripper with a force sensor attached to it. Closing the gripper’s arms step by step and reading the force sensor’s value will determine the softness the avocado has reached. Using an ESP8266 as centerpiece, the AvoRipe is turned into a full-blown IoT device, reporting the sensor readings to a smartphone app, and collecting the avocado’s data history on an Adafruit.IO dashboard.

There is unfortunately one big drawback: to calibrate the sensors, a set of nicely, ripe avocados are required, turning the device into somewhat of a chicken and egg situation. Nevertheless, it’s a nice showcase of tying together different platforms available for widescale hobbyist projects. Sure, it doesn’t hurt to know how to do each part from scratch on your own, but on the other hand, why not use the shortcuts that are at our disposal to remove some obstacles — which sometimes might include programming itself.

Continue reading “AvoRipe Takes A Firm Grip On The Ultimate First World Food Problem”

Brute-Forced Copyrighting: Liberating All The Melodies

Bluntly stated, music is in the end just applied physics. Harmony follows — depending on the genre — a more or less fixed set of rules, and thereĀ  are a limited amount of variation possible within the space of music itself. So there are technically only so many melodies possible, making it essentially a question of time until a songwriter or composer would come up with a certain sequence of notes without knowing that they’re not the first one to do so until the cease and desist letters start rolling in.

You might well argue that there is more to a song than just the melody — and you are absolutely right. However, current copyright laws and past court rulings may not care much about that. Aiming to point out these flaws in the laws, musician tech guy with a law degree [Damien Riehl] and musician software developer [Noah Rubin] got together to simply create every possible melody as MIDI files, releasing them under the Creative Commons Zero license. While their current list is limited to a few scales of fixed length, with the code available on GitHub, it’s really just a matter of brute-forcing literally every single possible melody.

Admittedly, such a list of melodies might not have too much practical use, but for [Damien] and [Noah] it’s anyway more about the legal and philosophical aspects: musicians shouldn’t worry about getting sued over a few overlapping notes. So while the list serves as a “safe set of melodies” they put in the public domain, their bigger goal is to mathematically point out the finite space of music that shouldn’t be copyrightable in the first place. And they definitely have a point — just imagine where music would be today if you could copyright and sue over chord progressions.
Continue reading “Brute-Forced Copyrighting: Liberating All The Melodies”

Clean Air And A Gentle Breeze In Your Hoodie

Hoodies are great, and rightfully a hacker’s favorite attire: they shield you from the people around you, keep your focus on the screen in front of you, and are a decent enough backup solution when you forgot your balaclava. More than that, they are also comfortable, unless of course it is summer time. But don’t worry, [elkroketto] has built a solution to provide the regular hoodie wearer with a constant breeze around his face, although his Clean Air Bubble is primarily tackling an even bigger problem: air pollution.

Wanting to block out any environmental factors from the air he breathes, [elkroketto] got himself a thrift store hoodie to cut holes in the back, and attach two radial fans that suck in the air through air filtering cloths. A 3D printed air channel is then connected to each fan, and attached on the inside of the hood, blowing the filtered air straight into his face. Salvaging a broken drill’s battery pack as power supply and adding a 3D printed clip-in case for the step-up converter, the fans should provide him a good 5 hours of fresh air. Of course, one could also add a solar charging rig if that’s not enough.

Keep in mind though, while a wearable air filter might sound particularly useful in current times, [elkroketto] specifically points out that this is not for medical use and won’t filter out any airborne diseases.

Reaching Serenity: Porting Git To A Homebrew Operating System

Life is all about the little joys — such as waking up in the morning and realizing there’s still plenty of time before you have to actually get up. Or getting up anyway to watch a delightful sunrise as the city slowly wakes up, or as [Andreas Kling] chose, porting your favorite development tool to the operating system you wrote.

With the aesthetics of ’90s UI design and the functionality of a simpler 2000s Unix-style system core in mind, and personal reasons to keep himself busy, [Andreas] started SerenityOS a little while back. Of course, writing your own operating system is always a great educational exercise, but it takes a certain amount of commitment to push it beyond an experimental playground phase. So ideally, you’d eventually want to use it as your actual main system, however, as software developer, [Andreas] was missing one crucial component for that: git. Well, he decided to change that and just port it — and as someone who likes to record his hacking sessions, you can watch him along the way.

Admittedly, watching someone tweaking some build tools and compiler settings would normally sound anything but overly exciting, but it adds a few more layers to it when doing so for a work-in-progress OS written from scratch — from digging into libc implementations to an almost reverse engineering approach to the build environment. If you take pleasure in people’s thought process in problem solving and (spoiler alert) their success, you will enjoy watching [Andreas]. On the other hand, if you’re more curious about a fresh approach at a desktop operating system, SerenityOS itself might be worth looking into. Of course, there are other options for that as well.

Continue reading “Reaching Serenity: Porting Git To A Homebrew Operating System”

Tony Brooker And Autocode – The First High-level Language

The field of computer science has undeniably changed the world for virtually every single person by now. Certainly for you as Hackaday reader, but also for everyone around you, whether they’re working in the field themselves, or are simply enjoying the fruits of convenience it bears. What was once a highly specialized niche field for a few chosen people has since grown into a discipline that not only created one of the biggest industry in modern times, but also revolutionized every other industry, some a few times over.

The fascinating part about all this is the relatively short time span it took to get here, and with that the privilege to live in an era where some of the pioneers and innovators, the proverbial giants whose shoulders every one of us is standing on, are still among us. Sadly, one of them, [Tony Brooker], a pioneer of the early programming language concept known as Autocode, passed away in November. Reaching the remarkable age of 94, the truly sad part however is that this might be the first time you hear his name, and there’s a fair chance you never heard of Autocode either.

But Autocode was probably the first high-level computer language, and as such played a fundamental role in the development of whatever you’re coding in today. So to honor the memory of [Tony Brooker], let’s remember the work he did with Autocode, and the leap in computer science history that it represented.

Continue reading “Tony Brooker And Autocode – The First High-level Language”

36C3: Build Your Own Quantum Computer At Home

In any normal situation, if you’d read an article that about building your own quantum computer, a fully understandable and natural reaction would be to call it clickbaity poppycock. But an event like the Chaos Communication Congress is anything but a normal situation, and you never know who will show up and what background they will come from. A case in point: security veteran [Yann Allain] who is in fact building his own quantum computer in his garage.

Starting with an introduction to quantum computing itself, and what makes it so powerful also in the context of security, [Yann] continues to tell about his journey of building a quantum computer on his own. His goal was to build a stable computer he could “easily” create by himself in his garage, which will work at room temperature, using trapped ion technology. After a few iterations, he eventually created a prototype with KiCad that he cut into an empty ceramic chip carrier with a hobbyist CNC router, which will survive when placed in a vacuum chamber. While he is still working on a DIY laser system, he feels confident to be on the right track, and his estimate is that his prototype will achieve 10-15 qubits with a single ion trap, aiming to chain several ion traps later on.

As quantum computing is often depicted as cryptography’s doomsday device, it’s of course of concern that someone might just build one in their garage, but in order to improve future cryptographic systems, it also requires to fully understand — also on a practical level — quantum computing itself. Whether you want to replicate one yourself, at a rough cost of “below 15k Euro so far” is of course a different story, but who knows, maybe [Yann] might become the Josef Prusa of quantum computers one day.

Continue reading “36C3: Build Your Own Quantum Computer At Home”

36C3: SIM Card Technology From A To Z

SIM cards are all around us, and with the continuing growth of the Internet of Things, spawning technologies like NB-IoT, this might as well be very literal soon. But what do we really know about them, their internal structure, and their communication protocols? And by extension, their security? To shine some light on these questions, open source and mobile device titan [LaForge] gave an introductory talk about SIM card technologies at the 36C3 in Leipzig, Germany.

Starting with a brief history lesson on the early days of cellular networks based on the German C-Netz, and the origin of the SIM card itself, [LaForge] goes through the main specification and technology parts of each following generation from 2G to 5G. Covering the physical basics, I/O interfaces, communication protocols, and the file system located on the SIM card, you’ll get the answer to “what on Earth is PIN2 for?” along the way.

Of course, a talk like this, on a CCC event, wouldn’t be complete without a deep and critical look at the security side as well. Considering how over-the-air updates on both software and — thanks to mostly running Java nowadays — feature side are more and more common, there certainly is something to look at.

Continue reading “36C3: SIM Card Technology From A To Z”