Dude about to pull a fire alarm

Fire Alarm Disco Party

What should your first instinct be when the room catches on fire? Maybe get out of the room, pull an alarm, and have a disco party? Not your first instinct? Well, this seemed pretty obvious to [Flying-Toast], who retrofitted an old fire alarm to activate a personal disco party.

After finding a fire alarm being sold on eBay, [Flying-Toast] couldn’t resist the urge to purchase one to use for his own purposes. He immediately gutted the life-saving internals to fill the shell with his own concoction of ESP goodness to be activated by the usual fire alarm mechanism. This sends a signal to the next elements of the party system.

Every part of the party system receives this activation signal, including the most important part, the party lights. Using a generic crystal disco ball and its own ESP, the party lights are more than sufficient to create the proper panic party. Of course, what is a party without music? With another ESP board and salvaged speakers, the proper atmosphere can be set right before the venue burns to the ground. The final touch is the additional hacked WIFI relays to turn off the lights in the room.

Priorities are important in emergencies, and that is exactly what [Flying-Toast] gave us with this project. Learning from this expertise is important, but how about learning from the near misses? For some risky decision making, be sure to check out the near nuclear war that was almost caused by a false alarm!

Continue reading “Fire Alarm Disco Party”

The Scourge Of Fake Retro Unijunction Transistors

We all know that it’s easy to get caught out by fake electronic components these days, with everything from microcontrollers to specialized ASICs being fair game. More recently, retro components that were considered obsolete decades ago are now becoming increasingly popular, with the unijunction transistor (UJT) a surprising example of this. The [En Clave de Retro] YouTube channel released a video (Spanish, with English dub) documenting fake UJTs bought off AliExpress.

These AliExpress UJTs were discovered after comments to an earlier video on real UJTs said that these obsolete transistors are still being manufactured and can be bought everywhere, meaning mostly on AliExpress and Amazon. Of course, this had to be investigated, as why would anyone still manufacture UJTs today, and did some Chinese semiconductor factory really spin up a new production line for them?

Perhaps unsurprisingly, some tests later and after a quick decapping of the metal can, the inside revealed a bipolar transistor (BJT) die (see top image on the left). Specifically, a PNP BJT transistor die, packaged up inside a vintage-style metal can with fake markings claiming it is a 2N2646 UJT.

The video suggests that scams like these might be because people want to get vintage parts for cheap, and that’s created a new market for people who would rather get scammed than deal with the sticker shock of paying for genuine new-old-stock or salvaged components. For example, while programmable unijunction transistors (PUTs) like the 2N6028 are still being manufactured, they cost a few dollars a pop in low quantities. UJTs used to be common in timer circuits, but now we have the 555.

Continue reading “The Scourge Of Fake Retro Unijunction Transistors”

TDA7000 die shot, with labels. Credit: Ken Shirriff

Reverse-Engineering The TDA7000 FM Radio Receiver IC

A wristwatch featuring the TDA7000 FM radio receiver IC. (Credit: Philips Technical Review)
A wristwatch featuring the TDA7000 FM radio receiver IC. (Credit: Philips Technical Review)

During the 1980s a lot of consumer devices suddenly got a lot smaller as large-scale integration using semiconductor technology took off. This included radios, with Philips’ TDA7000 FM radio receiver IC being the first to cram most of what you’d need for an FM radio receiver into a single chip. Recently, [Ken Shirriff] had a poke at analyzing a die shot of the TDA7000, reverse-engineering its functional blocks. How did the Philips engineers manage to miniaturize an FM radio? [Ken] will show you.

Continue reading “Reverse-Engineering The TDA7000 FM Radio Receiver IC”

Open-Source, Flexible E-Reader

Although the most popular e-reader by far is the Kindle, some argue that its primary use isn’t even as an e-reader at all but rather as a storefront for one of the world’s richest companies. For those who want user-focused consumer electronics instead, we’ll often reach for something more untethered, like an off-brand ebook that’s nothing more than an Android tablet with an e-paper display or even a jailbroken Kindle freed from the chains of Amazon. But as our 555 enthusiast community continually points out, even these are overkill for reading books. Enter the ZEReader.

The ZEReader started out as a bachelor’s engineering thesis project by [Anna-Lena Marx], whose goal was an open-source, microcontroller-based e-reader instead of the Linux or Android ones most commonly available. She’s based the firmware around the Zephyr Real-Time Operating System, which is an RTOS geared towards embedded devices. With this as a backbone, it’s trivially easy to implement the e-reader on different microcontrollers as well as use a wide variety of screens. Although the firmware is a work-in-progress, it’s already mature enough to support all of the basics of an e-reader, such as reading .epub files, navigating through the book, and saving progress. It even includes basic HTML parsing.

Continue reading “Open-Source, Flexible E-Reader”

Hackaday Links Column Banner

Hackaday Links: August 3, 2025

When all else fails, there’s amateur radio — and handwritten notes. Both ham radio and clear thinking helped rescue a mother and her son from a recent California camping trip gone wrong. While driving to the campsite in the Stanislaus National forest, the 49-year-old mother had the not-uncommon experience of GPS leading her and her 9-year-old son on a merry chase, sending her down a series of forest roads. Eventually the foliage got too dense for the GPS signals to penetrate, leaving the pair stranded in the forest with no guidance on how to get out.

Continue reading “Hackaday Links: August 3, 2025”

Repairing An Obscure Apple II Clone

The Apple II was made in great numbers, as was the Commodore 64. But the Mimic Spartan? It was a weird Apple II clone that you needed a Commodore 64 to use. [ARC Javmaster] has found one of these obscure machines and has set about bringing it back to life. Check out the video below.

The story of the machine has been told online by one of the developers on the project, one [Brent Marykuca]. Basically, the Mimic Spartan was an Apple II clone that was intended to take advantage of a C64 as a host machine. It came in a beige box with a bunch of edge connectors and cables sticking out, and you were intended to nest it on the back of your C64 so it could hook up to all the ports. Then, you could use your machine as a C64 or an Apple II, or sort of… both… and even exchange data between both machines in some limited ways. There are also a few details of this obscure machine that have been collated by [Mike Naberezny], who is seeking the original disk that shipped with the machine when new.

It’s early days yet for [ARC Javmaster]’s efforts to restore the Mimic Spartan. Thus far, it’s had a clean and basic test. It was able to display a short line of text on a display before ceasing activity. A full boot hasn’t been achieved just yet, but we can’t wait to see where the resurrection efforts go next.

Back in the day, there were all kinds of Frankenstein computer cards that effectively put one kind of computer inside another. These days, you can condense an entire retro machine down to run on a single microcontroller.

Continue reading “Repairing An Obscure Apple II Clone”

Why Cheap Digital Microscopes Are Pretty Terrible

The depth of field you get with a cheap Tomlov DM9 digital microscope. Pictured is the tip of a ballpoint. (Credit: Outdoors55, YouTube)
The depth of field you get with a cheap Tomlov DM9 digital microscope. Pictured is the tip of a ballpoint. (Credit: Outdoors55, YouTube)

We have all seen those cheap digital microscopes, whether in USB format or with its own screen, all of them promising super-clear images of everything from butterfly wings to electronics at amazing magnification levels. In response to this, we have to paraphrase The Simpsons: in this Universe, we obey the laws of physics. This applies doubly so for image sensors and optics, which is where fundamental physics can only be dodged so far by heavy post-processing. In a recent video, the [Outdoors55] YouTube channel goes over these exact details, comparing a Tomlov DM9 digital microscope from Amazon to a quality macro lens on an APS-C format Sony Alpha a6400.

First of all, the magnification levels listed are effectively meaningless, as you are comparing a very tiny image sensor to something like an APS-C sensor, which itself is smaller than a full-frame sensor (i.e., 35 mm). As demonstrated in the video, the much larger sensor already gives you the ability to see many more details even before cranking the optical zoom levels up to something like 5 times, never mind the 1,500x claimed for the DM9.

On the optics side, the lack of significant depth of field is problematic. Although the workarounds suggested in the video work, such as focus stacking and diffusing the light projected onto the subject, it is essential to be aware of the limitations of these microscopes. That said, since we’re comparing a $150 digital microscope with a $1,500  Sony digital camera with macro lens, there’s some leeway here to say that the former will be ‘good enough’ for many tasks, but so might a simple jeweler’s loupe for even less.

There are some reasonable hobby-grade USB microscopes. There are also some hard-to-use toys.

Continue reading “Why Cheap Digital Microscopes Are Pretty Terrible”