Exploring The Sounds And Sights Of Alien Worlds

The 20th century saw humankind’s first careful steps outside of the biosphere in which our species has evolved. Whereas before humans had experienced the bitter cold of high altitudes, the crushing pressures in Earth’s oceans, as well as the various soundscapes and vistas offered in Earth’s biosphere, beyond Earth’s atmosphere we encountered something completely new. Departing Earth’s gravitational embrace, the first humans who ventured into space could see the glowing biosphere superimposed against the seemingly black void of space, in which stars, planets and more would only appear when blending out the intense light from the Earth and its life-giving Sun.

Years later, the first humans to set foot on the Moon experienced again something unlike anything anyone has experienced since. Walking around on the lunar regolith in almost complete vacuum and with very low gravity compared to Earth, it was both strangely familiar and hauntingly alien. Although humans haven’t set foot on Mars yet, we have done the next best thing, with a range of robotic explorers with cameras and microphones to record the experience for us here back on Earth.

Unlike the Moon, Mars has a thin but very real atmosphere which permits the travel of soundwaves, so what does the planet sound like? Despite what fictional stories like Weir’s The Martian like to claim, reality is in fact stranger than fiction, with for example a 2024 research article by Martin Gillier et al. as published in JGR Planets finding highly variable acoustics during Mars’ seasons. How much of what we consider to be ‘normal’ is just Earth’s normal?

Continue reading “Exploring The Sounds And Sights Of Alien Worlds”

Building Experience And Circuits For Lithium Capacitors

For the cautious, a good piece of advice is to always wait to buy a new product until after the first model year, whether its cars or consumer electronics or any other major purchase. This gives the manufacturer a year to iron out the kinks and get everything ship shape the second time around. But not everyone is willing to wait on new tech. [Berto] has been interested in lithium capacitors, a fairly new type of super capacitor, and being unwilling to wait on support circuitry schematics to magically show up on the Internet he set about making his own.

The circuit he’s building here is a solar charger for the super capacitor. Being a fairly small device there’s not a lot of current, voltage, or energy, but these are different enough from other types of energy storage devices that it was worth taking a close look and designing something custom. An HT7533 is used for voltage regulation with a Schottky diode preventing return current to the solar cell, and a DW01 circuit is used to make sure that the capacitor doesn’t overcharge.

While the DW01 is made specifically for lithium ion batteries, [Berto] found that it was fairly suitable for this new type of capacitor as well. The capacitor itself is suited for many low-power, embedded applications where a battery might add complexity. Capacitors like this can charge much more rapidly and behave generally more linearly than their chemical cousins, and they aren’t limited to small applications either. For example, this RC plane was converted to run with super capacitors.

ESP32 Powers DIY Smart Energy Meter

Energy is expensive these days. There’s no getting around it. If, like [Giovanni], you want to keep better track of your usage, you might find value in his DIY energy meter build.

[Giovanni] built his energy meter to monitor energy usage in his whole home. An ESP32 serves as the heart of this build. It’s hooked up with a JSY-MK-194G energy metering module, which uses a current clamp and transformer in order to accurately monitor the amount of energy passing through the mains connection to his home. With this setup, it’s possible to track voltage, current, frequency, and power factor, so you can really nerd out over the electrical specifics of what’s going on. Results are then shared with Home Assistant via the ESPHome plugin and the ESP32’s WiFi connection. This allows [Giovanni] to see plots of live and historical data from the power meter via his smartphone.

A project like this one is a great way to explore saving energy, particularly if you live somewhere without a smart meter or any other sort of accessible usage tracking. We’ve featured some of [Giovanni]’s neat projects before, too.
Continue reading “ESP32 Powers DIY Smart Energy Meter”

Stripping GoPros To The Bone For Model Rocketry

The small size of action cameras has made them a great solution for getting high-quality experimental footage where other cameras don’t fit. GoPros are [Joe Barnard]’s camera of choice for his increasingly advanced rockets, but even the smallest models don’t quite fit where he needs them. They also overheat quickly, so in the video after the break, he demonstrates how he strips and customizes them to fit his required form factor.

[Joe] starts out with a GoPro HERO10 Bones, which is a minimalist version intended for FPV drones. He likes the quality of the 4K 120 FPS video and the fact that he can update the settings by simply holding up a QR code in front of the camera. The case appears to be ultrasonically welded, so careful work with a Dremel is required to get it open. The reveals the control board with an aluminum heat sink plate, and the sensor module on a short ribbon cable. For minimal drag[Joe] wants just the lens to poke out through the side of the rocket, so he uses slightly longer aftermarket ribbon cables to make this easier.

The camera’s original cooling design, optimized for drone airflow, meant the device would overheat within 5 minutes when stationary. To increase the run time without the need for an external heat sink, [Joe] opts to increase the thermal mass by adding thick aluminum to the existing cooling plate with a large amount of thermal paste. In an attempt to increase heat transfer from the PCB, he also covers the entire PCB with a thick layer of thermal paste. Many of the video’s commenters pointed out that this may hurt more than it helps because the thermal paste is really intended to be used as a thin layer to increase the contact surface to a heat sink. It’s possible that [Joe] might get better results with just a form-fitting thermal block and minimal thermal paste.

[Joe] is permanently epoxying three of these modified cameras into his latest rocket, which is intended to fly at Mach 3, and touch space. This may look like a waste of three relatively expensive cameras, but it’s just a drop in the bucket of a very expensive rocket build.

We’ve seen GoPros get (ab)used in plenty of creative ways, including getting shot from a giant slingshot, and reaching the edge of space on a rocket and a balloon.

Continue reading “Stripping GoPros To The Bone For Model Rocketry”

Electrostatic Puck: Making An Electret

You might have heard of electrets being used in microphones, but do you know what they are? Electrets produce a semi-permanent static electric field, similar to how a magnet produces a magnetic field. The ones in microphones are very small, but in the video after the break [Jay Bowles] from Plasma Channel makes a big electret and demonstrates it’s effects.

Electrets have been around since the 1800s, and are usually produced by melting an insulating material and letting it solidify between two high-voltage electrodes. The original recipe used a mix of Carnauba wax, beeswax, and rosin, which is what [Jay] tried first. He built a simple electric field detector, which is just a battery, LED and FET, with an open-ended resistor on the FET’s gate.

[Jay] 3D printed a simple cylindrical mold and stuck aluminum foil to the outer surfaces to act as the electrodes. He used his custom 6000:1 voltage transformer to hold the electrodes at ~40 kV. The first attempt did not produce a working electret because the electrodes were not in contact with the wax, and kept arcing across, which causes the electric charge to drop off. Moving the aluminum electrodes the inner surfaces of the mold eventually produced an electret detectable out to 10 inches.

This was with the original wax recipe, but there are now much better materials available, like polyethylene. [Jay] heated a a block of it in the oven until it turned into a clear blob, and compressed it in a new mold with improved insulation. This produced significantly better results, with an electric field detectable out to 24 inches.

[Jay] also built an array of detectors in a 5×5 grid, which he used to help him visualize the size and shape of the field. He once pulled off a similar trick using a grid of neon bulbs.

Continue reading “Electrostatic Puck: Making An Electret”

When Transistor Count Mattered

Many Hackaday readers have an interest in retro technology, but we are not the only group who scour the flea markets. Alongside us are the collectors, whose interest is as much cultural as it is technological, and who seek to preserve and amass as many interesting specimens as they can. From this world comes [colectornet], with a video that crosses the bridge between our two communities, examining the so-called transistor wars of the late 1950s and through the ’60s. Just as digital camera makers would with megapixels four or five decades later, makers of transistor radios would cram as many transistors as they could into their products in a game of one-upmanship.

A simple AM transistor radio can be made with surprisingly few components, but for a circuit with a reasonable performance they suggest six transistors to be the optimal number. If we think about it we come up with five and a diode, that’s one for the self-oscillating mixer, one for IF, an audio preamplifier, and two for the audio power amplifier, but it’s possible we’re not factoring in the relatively low gain of a 1950s transistor and they’d need that extra part. In the cut-throat world of late ’50s budget consumer electronics though, any marketing ploy was worth a go. As the price of transistors tumbled but their novelty remained undimmed, manufacturers started creating radios with superfluous extra transistors, even sometimes going as far as to fit transistors which served no purpose. Our curious minds wonder if they bought super-cheap out-of-spec parts to fill those footprints.

The video charts the transistor wars in detail, showing us a feast of tiny radios, and culminating in models which claim a barely credible sixteen transistors. In a time when far more capable radios use a fraction of the board space, the video below the break makes for a fascinating watch.

Continue reading “When Transistor Count Mattered”

A pair of hands hold two dark brown boards perpendicular two each other on a light brown benchtop. There are two light brown oval dowels in the end of one board that then project toward holes in the opposite board. Circular holes in the oval dowels are visible perpendicular to the second board, and will match up with holes in the board once pressed in. A cylindrical dowel is laying next to the joint and will be placed into the circular holes once assembled.

Creating A Signature Wood Joint

We really love when makers make their construction techniques evident in an aesthetically-pleasing way, and [Laura Kampf] has created a clever joint that reveals how a piece is made.

[Kampf] is a big fan of using her domino joiner, which is similar to biscuits or dowel joinery, but she didn’t love how it hid the construction of the joint. She first figured out an “off label” use of the joiner by running it from the outside of the joint to show the exposed domino from one end.

Building on the concept to show an interesting contrast on both sides of the joint, she drilled a hole perpendicular the domino and placed a dowel through it, creating a locking joint. The choice looks great once a finish is applied to really accentuate the contrast, and another bonus is that if glue is only applied to the dowel and domino, it becomes trivial to separate the joint if needed by drilling out the dowel.

If you’d like to see some other interesting ways to join wood, how about this laser-cut wedge tenon, soda bottle heat shrink, or this collection of CNC joints.

Continue reading “Creating A Signature Wood Joint”