Winter-Proof (And Improve) Your Resin 3D Printing

Was your 3D printer working fine over the summer, and now it’s not? With colder temperatures comes an overall surge in print failure reports — particularly with resin-based printers that might reside in outbuildings, basements, or garages. If you think this applies to you, don’t miss [Jan Mrázek]’s tips on improving cold-weather print results. His tips target the main reasons prints fail, helping to make the process a little more resilient overall. [Jan]’s advice is the product of long experience and experimentation, so don’t miss out.

With environmental changes comes the possibility that things change just enough to interfere with layers forming properly. The most beneficial thing overall is to maintain a consistent resin temperature; between 22 and 30 degrees Celsius is optimal. A resin heater is one solution, and there are many DIY options using simple parts. Some of the newer (and more expensive) printers have heaters built in, but most existing hobbyist machines do not.

An extreme case of blooming.

Temperature control isn’t the only thing, either. Layer formation and build plate adhesion can all be improved by adding rest times between layers. Yes, this increases print time. It also allows resin to settle before the next layer, improving adhesion and preventing blooming (a rough texture caused by an imperfect cure.) Since resin flows less readily at lower temperatures, rest times can help improve results. The best setting depends heavily on your particular setup, so [Jan] gives tips on finding optimal rest times.

Most common knowledge and advice from well-meaning communities online focuses on increasing exposure time or blaming the build plate. [Jan] feels that these are ultimately the wrong way to go about addressing failures. Usually, an environmental change (like the arrival of winter) has simply pushed a printer that was not optimized in the first place outside of its narrow comfort zone. A little optimization can set things back on track, making the printer more resilient and reliable overall.

Hackaday Podcast Episode 306: Bambu Hacks, AI Strikes Back, John Deere Gets Sued, And All About Capacitors

It was Dan and Elliot behind the microphones today for a transatlantic look at the week in hacks. There was a bucket of news about AI, kicked off by Deepseek suddenly coming into the zeitgeist and scaring the pants off investors for… reasons? No matter, we’re more interested in the tech anyway, such as a deep dive into deep space communications from a backyard antenna farm that’s carefully calibrated to give the HOA fits. We got down and dirty with capacitors, twice even, and looked at a clever way to stuff two websites into one QR code. It’s all Taylor, all the time on every channel of the FM band, which we don’t recommend you do (for multiple reasons) but it’s nice to know you can. Plus, great kinetic art project, but that tooling deserves a chef’s kiss. Finally, we wrap up with our Can’t Miss articles where Jenny roots for the right to repair, and Al gives us the finger(1).

Download the zero-calorie MP3.

Continue reading “Hackaday Podcast Episode 306: Bambu Hacks, AI Strikes Back, John Deere Gets Sued, And All About Capacitors”

Ancient Pocket Computer Gets A USB-C Upgrade

Remember the ZEOS Pocket PC? Perhaps you knew it as the Tidalwave PS-1000. Either way, it was a small clamshell computing device that was first released all the way back in 1992, and perhaps most accurately known as a DOS-based palmtop. Over at [Robert’s Retro] on YouTube, one of these fine devices was put through a repair and a modern upgrade program.

[Robert] educates us on the basics of the machine as he sets about the routine repairs so familiar to anyone in the retrocomputing scene. The first order of business is to clean up the damage to the battery compartment, which had suffered corrosion from leaking AA batteries. We get a solid look inside, and a walk-through on how to modify the device to run off USB-C power. It’s as simple as wiring up a small power module PCB and integrating that into the case, but it’s a neat mod done well—and it makes toying with the device much easier in 2025.

[Robert] has a cause he’s pursuing, though, when it comes to these old palmtops. He’s trying to identify the name of the oddball connectors these things used for the parallel and serial interfaces, and ideally, a source for the same. If you’ve got a tip on that, drop it in the comments.

Funnily enough, these things were cloned like crazy back in the day, so you might even find one under another name in your retro travels. They might be old, but somehow, it’s impossible for a piece of tech to feel old when you’re hooking it up with a USB-C port. We’ve featured [Robert’s] work before, too!

Continue reading “Ancient Pocket Computer Gets A USB-C Upgrade”

This Week In Security: DeepSeek’s Oopsie, AI Tarpits, And Apple’s Leaks

DeepSeek has captured the world’s attention this week, with an unexpected release of the more-open AI model from China, for a reported mere $5 million training cost. While there’s lots of buzz about DeepSeek, here we’re interested in security. And DeepSeek has made waves there, in the form of a ClickHouse database unintentionally opened to the world, discovered by the folks from Wiz research. That database contained chat history and log streams, and API keys and other secrets by extension.

Finding this database wasn’t exactly rocket science — it reminds me of my biggest bug bounty win, which was little more than running a traceroute and a port scan. In this case it was domain and sub domain mapping, and a port scan. The trick here was knowing to try this, and then understanding what the open ports represented. And the ClickHouse database was completely accessible, leaking all sorts of sensitive data. Continue reading “This Week In Security: DeepSeek’s Oopsie, AI Tarpits, And Apple’s Leaks”

A History Of Copper Pours

If you compare a modern PCB with a typical 1980s PCB, you might notice — like [lcamtuf] did — that newer boards tend to have large areas of copper known as pours instead of empty space between traces. If you’ve ever wondered why this is, [lcamtuf] explains.

The answer isn’t as simple as you might think. In some cases, it is just because the designer is either copying the style of a different board or the design software makes it easy to do. However, the reason it caught on in the first place is a combination of high-speed circuitry and FCC RF emissions standards. But why do pours help with unintentional emissions and high-speed signals?

Continue reading “A History Of Copper Pours”

Handy Online Metric Screw, Nut, And Washer Generator

For those times when you could really use a quick 3D model, this metric screw generator will do the trick for screws between M2 and M16 with matching nuts and washers. Fastener hardware is pretty accessible, but one never knows when a 3D printed piece will hit the spot. One might even be surprised what can be usefully printed on a decent 3D printer at something like 0.08 mm layer height.

Behind the scenes, [Jason]’s tool is an OpenSCAD script with a very slick web-based interface that allows easy customization of just about any element one might need to adjust, including fine-tuning the thread sizing. We’re fans of OpenSCAD here and appreciate what’s going on behind the scenes, but one doesn’t need to know anything about it to use the online tool.

Generated models can be downloaded as .3mf or .stl, but if you really need a CAD model you’re probably best off looking up a part and downloading the matching 3D model from a supplier like McMaster-Carr.

Prefer to just use the OpenSCAD script yourself, instead of the web interface? Select “Download STL/CAD Files” from the dropdown of the project page to download ScrewGenerator.scad for local use, and you’re off to the races.

Tensegrity construction with Adafruit led strands

The Jell-O Glow Tensegrity Toy You Didn’t Know You Needed

If you’re looking to add a pop of glowing whimsy to your workspace, check out this vibrant jiggly desk toy by [thzinc], who couldn’t resist the allure of Adafruit’s NOODS LED strands. [thzinc]’s fascination with both glowing LEDs and levitating tensegrity designs led to an innovative attempt to defy gravity once again.

The construction’s genius is all about the balance of tension across the flexible LED strands, with three red ‘arms’ and a blue ‘hanger’ arm supporting the central hub. [thzinc]’s early designs faced print failures, but by cleverly reorienting print angles and refining channel designs, he achieved a modular, sturdy structure. Assembly involved careful soldering, tension adjustments, and even a bit of temporary tape magic to perfect the wobbling equilibrium.

But, the result is one to applaud. A delightful, wobbly desk toy with a kind of a Jell-O vibe that dances to your desk’s vibrations while glowing like a mini neon sign. We’ve covered tensegrity constructions in the past, so with a little digging through our archives you’ll be able to find some unique variations to build your own. Be sure to read [thzinc]’s build story before you start. Feel free to combine the best out there, and see what you can bring to the table!

Continue reading “The Jell-O Glow Tensegrity Toy You Didn’t Know You Needed”