Boot Sector Pong As A Crash Course In Assembly

Have you ever wanted to develop a playable game small enough to fit into a disk’s 512 byte boot sector? How about watching somebody develop a program in assembly for nearly two hours? If you answered yes to either of those questions, or ideally both of them, you’re going to love this project from [Queso Fuego].

Whether you just want to check out the public domain source code or watch along as he literally starts from a blank file and codes every line for your viewing pleasure, chances are good that you’ll pick up a trick or two from this project. For example, he explains how all of the “graphics” in the game are done in 80 x 25 text mode simply by setting the background color of character cells without printing any text to them.

We really like the presentation in the video after the break, which was recorded over the course of multiple days, judging by the changing light levels in the background. As he types out each line of code, he explains what its function is and gives any background information necessary to explain how it will fit into the larger program. If you’ve ever wondered if you had what it takes to program in ASM, watching this video is a great way to decide.

[Queso Fuego] mentions that this project, and his research into this sort of low-level programming, came about due to the social distancing boredom that many of us are feeling. While we’re certainly not advocating for him to kept locked in his home permanently, with projects like this, you’ve got to admit it seems like a win for the rest of us.

Continue reading “Boot Sector Pong As A Crash Course In Assembly”

Parking Assistant Helps Back Up The Car Without Going Too Far

Sure, [Ty Palowski] could have just hung a tennis ball from the ceiling, but that would mean getting on a ladder, testing the studfinder on himself before locating a ceiling joist, and so on. Bo-ring. Now that he finally has a garage, he’s not going to fill it with junk, no! He’s going to park a big ol’ Jeep in it. Backwards.

The previous owner was kind enough to leave a workbench in the rear of the garage, which [Ty] has already made his own. To make sure that he never hits the workbench while backing into the garage, [Ty] made an adorable stoplight to help gauge the distance to it. Green mean’s he’s good, yellow means he should be braking, and red of course means stop in the name of power tools.

Inside the light is an Arduino Nano, which reads from the ultrasonic sensor mounted underneath the enclosure and lights up the appropriate LED depending on the car’s distance. All [Ty] has to do is set the distance that makes the red light come on, which he can do with the rotary encoder on the side and confirm on the OLED. The distance for yellow and green are automatically set from red — the yellow range begins 24″ past red, and green is another 48″ past yellow. Floor it past the break to watch the build video.

The humble North American traffic signal is widely recognized, so it’s a good approach for all kinds of applications. Teach your children well: start them young with a visual indicator of when it’s okay to get out of bed in the morning.

Continue reading “Parking Assistant Helps Back Up The Car Without Going Too Far”

Already Have That Book? Get The ISBN 411 Over IoT

Have you ever been at the bookstore and stumbled across a great book you’ve been looking for, but had a nagging feeling that you already had it sitting at home? Yeah, us too. If only we’d had something like [Kutluhan Aktar]’s ISBN verifier the last time that happened to say for sure whether we already had it.

To use this handy machine, [Kutluhan] enters the International Standard Book Number (ISBN) of the book in question on the 4 x 4 membrane keypad. The Arduino Nano 33 IoT takes that ISBN and checks it against a PHP web database of book entries [Kutluhan] created with the ISBN, title, author, and number of pages. Then it lets [Kutluhan] know whether they already have it by updating the display from a Nokia 5110.

If you want to whip one of these up before your next trip to the bookstore, this project is completely open source down the web database. You might want to figure out some sort of enclosure unless you don’t mind the shy, inquisitive stares of your fellow bookworms.

Stalled out on reading because you don’t know what to read next? Check out our Books You Should Read column and get back to entertaining yourself in the theater of the mind.

Via r/duino

Hackaday Links Column Banner

Hackaday Links: September 27, 2020

Hardly a week goes by without a headline screaming about some asteroid or another making a close approach to Earth; it’s only by reading the fine print that we remember what an astronomer’s definition of “close” means. Still, 2020 being what it is, it pays to stay on top of these things, and when you do the story can get really interesting. Take asteroid 2020 SO, a tiny near-Earth asteroid that was discovered just last week. In a couple of weeks, 2020 SO will be temporarily captured into Earth orbit and come with 50,000 km near the beginning of December. That’s cool and all, but what’s really interesting about this asteroid is that it may not be a rock at all. NASA scientists have reverse-engineered the complex orbit of the object and found that it was in the vicinity of Earth in late 1966. They think it may be a Centaur booster from the Surveyor 2 moon mission, launched in September 1966 in the runup to Apollo. The object will be close enough for spectral analysis of its. surface; if it’s the booster, the titanium dioxide in the white paint should show up loud and clear.

Lasers are sort of forbidden fruit for geeks — you know you can put an eye out with them, and still, when you get your hands on even a low-power laser pointer, it’s hard to resist the urge to shine it where you shouldn’t. That includes into the night sky, which as cool as it looks could be bad news for pilots, and then for you. Luckily, friend of Hackaday Seb Lee-Delisle has figured out a way for you to blast lasers into the night sky to your heart’s content. The project is called Laser Light City and takes place in Seb’s home base of Brighton int he UK on October 1. The interactive installation will have three tall buildings with three powerful lasers mounted on each; a smartphone app will let participants control the direction, shape, and color of each beam. It sounds like a load of fun, so check it out if you’re in the area.

We got an interesting story from a JR Nelis about a quick hack he came up with to help his wife stay connected. The whole post is worth a read, but the short version of the story is that his wife has dementia and is in assisted living. Her landline phone is her social lifeline, but she can’t be trusted with it, lest she makes inappropriate calls. His solution was to modify her favorite cordless phone by modifying the keypad, turning it into a receive-only phone. It’s a sad but touching story, and it may prove useful to others with loved ones in similar situations.

We pay a lot of attention to the history of the early computer scene, but we tend to concentrate on computers that were popular in North America and the UK. But the Anglo-American computers were far from the only game in town, and there’s a new effort afoot to celebrate one of the less well-known but still important pioneer computers: the Galaksija. Aside from having a cool name, the Yugoslavian Z80 computer has a great story that will be told in documentary form, as part of the crowdsourced Galaksija project. The documentary stars our own Voja Antonic, who was key to the computer’s development. In addition to the film, the project seeks to produce a replica of the Galaksija in kit form. Check out the Crowd Supply page and see if it’s something you’re willing to back.

There’s an interesting new podcast out there: the Pick, Place, Podcast. Hosted by Chris Denney and Melissa Hough, it comes out every other week and is dedicated to the electronic assembly industry. They’ve currently got eight episodes in the can ranging from pick and place assembly to parts purchasing to solder paste printing. If you want to learn a little more about PCB assembly, this could be a real asset. Of course don’t forget to make time for our own Hackaday Podcast, where editors Mike and Elliot get together to discuss the week in hardware hacking.

Food Dispenser Shakes And Rattles

[Elite Worm] follows a strict diet that involves regularly mixing dry ingredients in varying proportions. The task grew tedious, and thus automation became a tantalising prospect. Enter the DIY shaking food dispenser.

The machine has a simple touch screen interface, with an Atmega328P running the show behind the scenes. The user can store a series of profiles, which each correspond to a different mixture of four base ingredients. Dealing with dry ingredients like oats, chia, and flax, shaking is often necessary to get things moving. To achieve this, the rig packs a hefty DC motor up top, which turns an eccentric shaft, shaking the whole rig. Each ingredient hopper has a servo-controlled nozzle, so ingredients can be dispensed in turn, with a load cell in the base measuring the weight delivered.

It’s a neat system, though [Elite Worm] notes that the device shakes just a little too much, and suspects it won’t hold up in the long term. We suspect a less violent, higher frequency vibration might be less hard on the components, but we’re sure there’ll be some quality engineering going into the next build. We’ve seen [Elite Worm]’s work here before, too. Video after the break.

Continue reading “Food Dispenser Shakes And Rattles”

DIYing A High End Camera Arm

One of the first purchases for anyone looking to shoot video should be a tripod. Key to getting clean and stable shots, they can nevertheless be limiting in their range of motion. Wanting something a little more high-end, but dissatisfied with the high cost of commercial options, [Alexandre Chappel] decided to build his own camera arm.

The build is based around square alumiunium tubing, with the high-tolerance material acting as the arm’s vertical and horizontal rails. 3D printed brackets and adapters are used to bolt everything together, along with several printed components used as drilling guides to help accurately machine the aluminium tubes. Adjustment is built into the carriages that travel along the rails, to help account for any slop in the 3D printed parts. A counterweight system is then installed to ensure the camera doesn’t hit the floor when not in the locked position.

It’s a tidy build, and one that has given [Alexandre] far more flexibility to shoot than his existing tripods. Additionally, adjusting the camera position is much quicker than before. Of course, when you’re building your own rigs, the sky is the limit. Video after the break.

Continue reading “DIYing A High End Camera Arm”

Rocket Plane Build Aims For High Speed Flight

[James Whomsley] likes flying, and likes flying fast. After reaching a speed of 114 miles an hour with an RC plane, he wanted to go further and break that record. To do so, he looked towards rocket power, and started a new build.

The design consists of a combination of 3D printed parts, laser-cut plywood bulkheads, and foamboard flight surfaces, with a few carbon fiber stiffeners thrown in here and there. For this early prototype, power is solely from hobby rocket motors, providing thrust for 1.6 seconds, meaning flight times are necessarily short. The craft is launched from an aluminium profile rail thanks to a 3D printed sliding guide pin.

Initial tests with two rocket motors were promising, leading to a second trial with a full six motors fitted. The thrust line was a little low, however, and a major pitch-up just after launch meant the plane only reached around 62 miles an hour. [James] still has a ways to go to beat his previous record, so intends to explore adding ducted fan propulsion to get the plane in the air before using the rockets as a speed booster in steady flight.

Of course, if you can’t lay your hands on rocket engines, you could always consider spinning up your own. (Or ditch the engine entirely.) Video after the break.

Continue reading “Rocket Plane Build Aims For High Speed Flight”