Teardown Of Costco Ceiling Light Reveals Microwave Motion Sensor And Hackable Design

[hclxing] eagerly picked up an LED ceiling light for its ability to be turned on and off remotely, but it turns out that the lamp has quite a few other features. These include adjustable brightness, color temperature, automatic turnoff, light sensing, motion sensing, and more. Before installing, [hclxing] decided to tear it down to see what was involved in bringing all those features to bear, but after opening the lamp there wasn’t much to see. Surprisingly, besides a PCB laden with LEDs, there were exactly two components inside the unit: an AC power adapter and a small white controller unit. That’s it.

Microwave-based motion sensor board on top, controller board for LED ceiling light underneath.

The power adapter is straightforward in that it accepts 100-240 Volts AC and turns it into 30-40 Volts DC for the LEDs, and it appears to provide 5 V for the controller as well. But [hclxing] noticed that the small white controller unit — the only other component besides the LEDs — had an FCC ID on it. A quick bit of online sleuthing revealed that ID is attached to a microwave sensor module. Most of us would probably expect to see a PIR sensor, but this light is motion sensing with microwaves. We have seen such units tested in the past, which links to a video [hclxing] also references.

The microwave motion sensor board is shown here, and underneath it is a dense PCB that controls all other functions. Once [hclxing] identified the wires and their signals, it was off to Costco to buy more because the device looks eminently hackable. We’re sure [hclxing] can do it, given their past history with reverse-engineering WyzeSense hardware.

SOLID Promises A New Approach To How The Web Works

As it stands on the modern Internet, your data is no longer your own. Your emails, photos, and posts all live on servers owned by large corporations. Their policies give them access to your data, which is mined to generate advertising revenue. And if you want your data back, there are innumerable hoops to jump through. Want it deleted entirely? Good luck.

Tim Berners-Lee, original creator of the World Wide Web, is behind the project.

Sir Tim Berners-Lee, as the original creator of what became the Web, has drawn issue with the current state of play. To move the ball on the issue, he’s been working on a design for decentralized internet and the efforts have led to the establishment of the Solid project. The goal is to rectify online privacy and ownership issues and give users greater control over their personal data.

The big question is how do you do that? When SOLID was announced last year there were few if any details on the approach taken by the program. But since then, more details have surface and you can even take an early version of the program for a spin. Let’s take a look.

Continue reading “SOLID Promises A New Approach To How The Web Works”

Laser Artistry Hack Chat

Join us on Wednesday, April 1 at noon Pacific for the Laser Artistry Hack Chat with Seb Lee-Delisle!

It’s hard to forget the first time you see a laser light show. A staple at concerts starting in the 1980s, seeing a green laser lance out over the heads of tens of thousands of screaming fans to trace out an animated figure or pulsating geometric shapes was pure fascination, and wondering how it was all done was half the fun. As we all know now, it was all done with mirrors, tiny and connected to low-inertia galvanometers capable of the twitchiest of movements, yet precise enough to position the beam of light exactly where it needed to be to create the desired illusion. It was engineering, science, and art all wrapped up into one package.

Fast forward to the present day, and laser show technology has certainly advanced. Bulky laser tubes have been replaced by solid-state devices, more colors are available, and galvo designs have improved. The art and artistry of the laserist have grown with the tech, which is where our guest Seb Lee-Delisle comes into his own. We’ve featured some of Seb’s work before, like an Asteroids laser vector display and enormous public laser displays. And now he’ll stop by to talk about how the art and the tech combine in his hands to produce something much greater than the sum of its parts.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, April 1 at 12:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “Laser Artistry Hack Chat”

Designing Printed Adapters For Power Tool Batteries

Unless you’re particularly fond of having multiple types of batteries and chargers, you’d do well to make sure all your portable power tools are made by the same company. But what do you do if there’s a tool you really need, but your brand of choice doesn’t offer their own version of it? Rather than having to buy into a whole new tool ecosystem, you might be able to design your own battery adapter.

Note the locking tab that’s been printed separately.

As [Chris Chimienti] explains in the video after the break, the first thing you’ve got to do (beyond making sure the voltages match) is take some careful measurements of the connectors on your batteries and tools. His goal was to adapt a Milwaukee M12 battery to Makita CXT tool, so if you happen to have that same combination of hardware you can just use his STLs. Otherwise, you’ll be spending some quality time with a pair of calipers and a notepad.

Once the interfaces have been designed and printed, they are wired together and mounted to opposite ends of the center support column. In theory you’d be done at this point, but as [Chris] points out, there’s a bit more to it than just wiring up the positive and negative terminals. Many tools use thermistors in the batteries for thermal protection purposes, and when the tool doesn’t get a reading from the sensor, it will likely refuse to work.

His solution to the problem is to “hotwire” the thermistor lead on the battery connector with a standard resistor of the appropriate value. This will get the tool spinning, but obviously there’s no more thermal protection. For most homeowner DIY projects this probably won’t cause a problem, but if you’re a pro who’s really pushing their tools to the limit, this project might not be for you.

Of course, this isn’t the first time we’ve seen somebody adapt batteries from different brands to work on their tools. It’s a common enough problem once you start building up a workshop, although you could always avoid it by building all your own tools.

Continue reading “Designing Printed Adapters For Power Tool Batteries”

Coronavirus Testing Follow-Up: Rapid Immunologic Testing

When I started writing my recent article on COVID-19 testing, I assumed that I would be doing a compare and contrast sort of article. Like many people, I assumed that the “gold standard” test would be the reverse transcriptase-polymerase chain reaction (RT-PCR) test that I described in some detail. And indeed it is, but it’s not without its problems, such as the lack of certified labs and the need for trained technicians to run the samples. I also assumed there would be another test, a simple serological test that could use antibodies to discern if there was an active or even a previous, resolved infection.

At the time I wrote the first article, I could find no indication of an immunologic test for COVID-19 (more specifically, a test for SARS-Cov-2, the virus that causes COVID-19). But almost as rapidly as the number of COVID-19 cases rises, the news changes, and it appears that simple, rapidly performed antibody tests are now or soon will be available. They likely won’t replace the gold standard RT-PCR test, but they do stand to be a game-changer for the front line providers and the victims of this disease. So it pays to take a quick look at immunoassays for infectious diseases, and learn how they work.

Continue reading “Coronavirus Testing Follow-Up: Rapid Immunologic Testing”

Vinyl Cutter Migrates From Scrapbooks To Gaskets

We know it all too well: another smoothly-operating night in the garage easily halted by a broken component. In the late hours of the night, no hardware store will open its doors. And while waiting may reward the patient, creativity may reward those who act now. That’s exactly where [Justin] found himself one evening: with a torn gasket. Not to be dismayed, he turned to his fiancee [Amy] and the two of them managed to design and cut a perfectly fitting replacement gasket on [Amy’s] vinyl cutter in a  mere matter of minutes.

In the video after the break, the two step us through their process in detail. By starting with an image of the existing gasket, they capture a reference image. Some light work in photoshop cleans up everything except the resulting gasket they’re looking for. Finally, sizing “by eye” in the vinyl cutter’s software after measuring an existing dimension gives them sufficient precision to remake a duplicate gasket that’s eye-for-eye indistiguishable from the original.

It seems like we often hear about vinyl-cut gaskets in passing or in the comments, but it’s great to see a team post such a fabulous success story putting them to good use. And in case a plain old’ vinyl cutter blade wont do the trick, why not try running it at ultrasonic speeds?

Continue reading “Vinyl Cutter Migrates From Scrapbooks To Gaskets”

Ammo Can Battery; 50 Ah LiFePO4 Clad In Army Green

For the price of a mid-range Android phone, [Kenneth Finnegan] turned a 50 caliber ammo can into a 50 amp-hour portable power supply. The battery pack uses four 3.5 V LiFePO4 cells wired in series to achieve a nominal 12 V supply that stands in for a traditional lead-acid battery. The angel of second-hand purchases was smiling on this project as the cells were acquired on eBay in unused condition, complete with bus bars and mounting spacers. All it took to fit them in the case was to grind off the spacers’ dovetails on the outer edges.

There are many benefits to Lithium Iron Phosphate chemistry over traditional lead acid and [Kenneth] spells that out in his discussion of the battery management system at work here. While the newer technology has a much better discharge curve than lead-acid, there’s a frightening amount of power density there if these batteries were to have a catastrophic failure. That’s why there are Battery Management Systems and the one in use here is capable of monitoring all four cells individually which explains the small-gauge wires in the image above. It can balance all of the cells to make sure one doesn’t get more juice than the others, and can disconnect the system if trouble is a-brewin’. Continue reading “Ammo Can Battery; 50 Ah LiFePO4 Clad In Army Green”