Humans Vs. Zombies Via The ESP8266

Zombies, for the most part, remain fictional and are yet to trouble human communities. Despite the many real world calamities we face, the zombie concept remains a compelling one and the subject of many books, films, and video games. [CNLohr] was at MagStock Eight when he met [Aaron], who has developed a real world game in this vein. (YouTube, embedded below.)

[Aaron]’s game goes by the name of SpyTag, and is played by a group of people who each have a small device affixed to their wrist. Two players start off as zombies, and the rest are humans. The zombies can use their devices as proximity detectors to hunt down nearby humans, and the humans can use their devices to detect nearby zombies, helping them escape and evade.

The devices operate using the ESP8266, in AP+station mode. The proximity sensing works on a very simple method. Devices show their human or zombie status by appearing as a WiFi AP by that name, and proximity detection is achieved by showing the signal strength of the opposite AP on an LED bar on the device. Once zombies get close enough to human devices, the humans are infected and become zombies themselves.

It’s a tidy and lightweight way to implement the gameplay, and requires no infrastructure or support hardware outside of the wristband hardware for the players. While this method would likely be vulnerable to spoofing, [CNLohr] reports that future work will likely switch to using the ESP-NOW protocol to make the game more secure.

[Aaron] has shared the project on Github for those interested in digging deeper into the code. We’ve seen a similar game played before, using IR instead. Video after the break.

[Thanks to Baldpower for the tip!]

Continue reading “Humans Vs. Zombies Via The ESP8266”

Eight Years Of Partmaking: A Love Story For Parts

Over my many years of many side-projects, getting mechanical parts has always been a creative misadventure. Sure, I’d shop for them. But I’d also turn them up from dumpsters, turn them down from aluminum, cut them with lasers, or ooze them out of plastic. My adventures making parts first took root when I jumped into college. Back-in-the-day, I wanted to learn how to build robots. I quickly learned that “robot building” meant learning how to make their constituent parts.

Today I want to take you on a personal journey in my own mechanical “partmaking.” It’s a story told in schools, machine shops, and garages of a young adulthood spent making parts. It’s a story of learning how to run by crawling through e-waste dumps. Throughout my journey, my venues would change, and so would the tools at-hand. But that hunger to make projects and, by extension, parts, was always there.

Dear partmakers, this is my love letter to you.

Continue reading “Eight Years Of Partmaking: A Love Story For Parts”

Use Your 360 Controllers On The Original Xbox

Microsoft’s original Xbox was regarded curiously by gamers and the press alike at launch. It was bigger, bulkier, and featured an eldritch monstrosity as its original controller. Thankfully, Microsoft saw fit to improve things later in the console’s lifespan with the Controller S, but nothing quite compares to the simple glory of the Xbox 360 controller. Now, there’s a way to use one on your original Xbox.

This project is the work of [Ryzee119], who previously adapted the controller for use with the Nintendo 64. An Arduino Pro Micro, acting as a master controller, talks to a MAX3421 USB host controller, which interfaces with an Xbox 360 wireless receiver, either genuine or third-party. The Arduino reads the data from the wireless receiver and then emulates a standard controller to the original Xbox. The system can handle up to four players on wireless 360 controllers, requiring an extra Arduino per controller to act in slave mode and emulate the signals to the original Xbox. In testing, lag appears roughly comparable with an original wired controller. This is a particularly important consideration for fast-paced action games or anything rhythm based.

It’s a well executed, fully featured project that should improve your weekly Halo 2 LAN parties immensely. No more shall Greg trip over a controller cable, spilling Doritos and Mountain Dew on your shagpile carpeting. Video after the break.

[Thanks to DJ Biohazard for the tip!]

Continue reading “Use Your 360 Controllers On The Original Xbox”

The Blackest Black, Now In Handy Pocket Size

If you thought “carbon nanotubes” were just some near-future unobtainium used in space elevators, don’t worry, you certainly aren’t alone. In reality, while the technology still has a way to go, carbon nanotube production has already exceeded several thousand tons per year and there are products you can buy today that are using this decidedly futuristic wonder material. Now there’s even one you can put in your pocket.

Created by [Simon], a designer in the UK, this small carbon nanotube array is described as “A simulated black hole” because the surface absorbs 99.9% of the visible light that hits it. Protected by a clear acrylic case, the sample of the material makes a circle that’s so black it gives the impression you’re looking into deep space. Unfortunately, no time-dilating gravitational forces are included at any of level of support in the ongoing Kickstarter campaign; but considering it was 100% funded in just a few hours, it seems like most people are OK with the trade-off.

[Simon] is well aware of the ongoing war between different methods of creating the “Blackest Black”, and he thinks he’s put his money (and by extension, his backer’s) money on the winner. Singularity is using a similar technology to the exclusively-licensed Vantablack, rather than a super-dark paint like “Black 3.0”. In fact he’s so confident that Singularity will appear darker than Black 3.0 that he mentions a head-to-head comparison is currently in the works.

If there’s a downside to the carbon nanotube array used in Singularity, it’s that you can’t actually touch it. [Simon] warns that while the acrylic case is only held together with magnets and can be opened for more careful inspection, actually touching the surface is absolutely not recommended. He says that even dust getting on the material is going to adversely effect its ability to absorb light, so you should really keep it buttoned up as much as possible.

While the Singularity looks like an interesting way to experience near perfect blackness, the concept itself is far from a novelty. A material that can absorb essentially all the light that hits it has important scientific, military, and of course artistic applications; so figuring out how to pull it off has become a pretty big deal.

Ground Penetrating Radar For The Masses

Radar is a useful tool with familiar uses such as detecting aircraft and observing weather. It also has some less known applications, such as a technology known as ground-penetrating radar (GPR). Despite the difficulty of sending and receiving radio waves through solid objects, with the right equipment it’s possible to build a radar that works underground as well.

GPR is used often for detecting underground utilities, but also has applications in other fields such as archaeology and geology. For those people in these fields, a less expensive GPR was the priority of a group presenting at a 2017 National Institute of Telecommunications of Poland conference (pdf warning). The presentation goes into specific detail on how to build a GPR for around €600, much less than commercial offerings.

The presentation begins by highlighting the basics of GPR, then details the hardware bill of materials for the transmitting circuit, receiving circuit, and the DC power supplies. It also details the theory behind the software needed to get the circuit running properly, and has code as well. The processing is done on a 32-bit Mbed platform, and the rest of the GPR is built with easy-to-source components as well.

It’s always good to see useful hardware projects that bring costs of traditionally expensive equipment down to the grasp of average people. Even traditional radar systems are now available for hundreds of dollars, and we’ve even seen attempts at other GPR systems before as well.

Thanks to [Stefan] for the tip!

In Soviet Russia, Computer Programs You

We admire [Alex Studer’s] approach to schoolwork. His final assignment in his history class was to do an open-ended research project on any topic and — this is key — using any medium. He’d recently watched a video about how Tetris came from the former Soviet Union, and adding in a little eBay research set out to build a period-accurate Soviet computer replica. The post covers the technical details, but if you want to read the historical aspects the school paper is also online.

The first decision was what CPU to use and [Alex] picked the U880 which is a Soviet Z80. All the usual parts you would use with a Z80 have U880 equivalents, so that fleshed out the rest of the design. There were a few concessions made. Instead of a bulky analog monitor, the replica uses an LCD display. Instead of an audio cassette recorder, the new machine uses a CompactFlash socket. We don’t think those are bad decisions. He also replaced the Soviet EPROMs with modern parts. Although the original parts appeared to program correctly, they were unreliable in operation. [Alex] theorizes that his programmer did not generate enough programming voltage to fully program the cells, so they would pass at the low speeds used by the programmer, but not work in the actual circuit.

Continue reading “In Soviet Russia, Computer Programs You”

Purge Buckets To Help With Multimaterial Printing

3D printing is cool, but most basic fused deposition printers just print in a single color. This means that if you want a prettier, more vibrant print, you need to paint or perform some other kind of finishing process. Multimaterial printers that can switch filaments on the fly exist, but they often have an issue with waste. [3DMN] decided to attempt building a purge bucket as a solution.

[3DMN] was previously familiar with using a purge block when running multimaterial prints. A basic block model is printed along side the actual desired part. The block is printed so that it is at the same layer height as the desired part, so the nozzle can purge cleanly without stringing plastic all over the print bed.

Tired of the waste, [3DMN] designed a purge bucket which moves with the Z-axis of his Geeetech A20M printer. The bucket attaches to the Z-axis with lock nuts and is always at the same height relative to the nozzle, regardless of the stage of printing. When a material change is required, the nozzle moves to the bucket, purges the filament, and then moves back to the print. The bucket features a 3mm silicone wiper to help ensure there is no material left clinging to the nozzle after the purge is complete, and aluminium tape which helps prevent the purged filament sticking to the walls of the bucket.

[3DMN] notes there’s also a speed increase for some prints, due to no longer needing to print purge objects along with the main part. The parts are available on Thingiverse for those of you wishing to experiment with your own setup.

Multimaterial printing can have some great visual results, and it’s great to see the community providing solutions to improve the process and reduce the waste involved.  We’ve also seen filament splicing, which is another unique approach to multimaterial prints. Video after the break.

Continue reading “Purge Buckets To Help With Multimaterial Printing”