The Machinists’ Mantra: Precision, Thy Name Is Rigidity

“Everything is a spring”. You’ve probably heard that expression before. How deep do you think your appreciation of that particular turn of phrase really is? You know who truly, viscerally groks this? Machinists.

As I’ve blathered on about at length previously, machine tools are all about precision. That’s easy to say, but where does precision really come from? In a word, rigidity. Machine tools do a seemingly magical thing. They remove quantities of steel (or other materials medieval humans would have killed for) with a slightly tougher piece of steel. The way they manage to do this is by applying the cutting tool to the material within a setup that is so rigid that the material has no choice but to yield. Furthermore, this cutting action is extremely precise because the tool moves as little as possible while doing so. It all comes down to rigidity. Let’s look at a basic turning setup.

Continue reading “The Machinists’ Mantra: Precision, Thy Name Is Rigidity”

Portable Hacking Unit Combines Pi With WiFi Pineapple

Sometimes you need to hack on the go. [Supertechguy] has put together an interesting system for hacking on the hoof called the Pineapple Pi. This combines a Raspberry Pi 3 with a seven-inch touchscreen and a Hak 5 WiFi Pineapple into a handy portable package that puts all of the latest WiFi and ethernet hacking tools to hand. The package also includes a 20,100 mAh battery, so you won’t even need a wall socket to do some testing. It’s a bit of a rough build — it is held together with velcro, for instance — but it’s a good place to start if you are looking to make a portable, standalone system for testing WiFi networks.

Continue reading “Portable Hacking Unit Combines Pi With WiFi Pineapple”

10,000-Year-Old Camera Lens Takes Striking Pictures

The first photograph was taken sometime in the early 1800s, and through almost two centuries of development we’ve advanced through black-and-white, the video camera, and even high-speed cameras that can take thousands of frames per second. [Mathieu Stern] took a step back from all of the technological progress of the past two hundred years, though, and found a lens for his camera hidden in the glacial ice of Iceland.

Ice in this part of the world has been purified over the course of 10,000 years, and [Mathieu] realized that with this purity the ice could be formed into a workable camera lens. The first step was to get something that could actually form the ice into the proper shape, and for that he used a modified ice ball maker that was shaped to make a lens rather than a sphere. Next, he needed an enclosure to hold the lens and attach it to his camera, which he made using a 3D printer.

For this build, the hardest part probably wasn’t making the actual equipment, but rather getting to the right place in Iceland and actually making the lenses. At room temperature the lenses could be made in around five minutes, but in Iceland it took almost 45 minutes and the first four attempts broke. The fifth one was a charm though, so after over five hours on the beach he was finally able to make some striking images with the 10,000-year-old ice lens which melted after only a minute of use. If that seems like too much work, though, you can always outfit your camera with no lens at all.

Thanks to [baldpower] for the tip!

Continue reading “10,000-Year-Old Camera Lens Takes Striking Pictures”

AV Synth Is Psychedelic Analog Mayhem

Digital video is cool and all, but it can’t compete with analog in terms of smooth, creamy glitches and distortion. [gieskes] has developed an analog audio-visual synthesizer that is a great example of the old-school retro visuals you can create with a handful of simple components.

Known as the 3TrinsRGB+1c, it’s available both assembled and in kit form. It’s probably best to start with the manual. Synthesis is achieved through the use of a HEF40106 hex inverting buffer – a cheap and readily available part that nonetheless provides for excellent results. Video can be switched between RGB oscillators and a series of inputs, and there are various controls to create those classic scrolling effects and other visual oddities.

Additionally, a series of connections to the underlying circuitry are broken out on a header connector. This allows for extra modules to be plugged in, and several designs are available to expand the unit’s capabilities.

Analog video isn’t used so much on a day-to-day basis anymore, but it’s a great technology to tinker and experiment with. We’ve seen some of [gieskes] experiments in this arena before, too – like this Arduino video sampler. Video after the break.

Continue reading “AV Synth Is Psychedelic Analog Mayhem”

3D Printed Bridge Goes Dutch

If you’ve ever been to Amsterdam, you know there are plenty of canals and, therefore, plenty of bridges. Next year, a unique pedestrian bridge in the old city center will go into service. The stainless steel bridge will be 3D printed and also embed a number of sensors that will collect data that the printer — MX3D — and their partners Autodesk, the Alan Turing Institute, and the Amsterdam Institute for Advanced Metropolitan Studies, hope will help produce better 3D printed structures in the future. The bridge will cross the Oudezijds Achterburgwal which is near the city’s infamous red light district.

Since the bridge matches exactly with the model used to print it, scientists hope to be able to map the sensor data to a virtual twin of the bridge very easily. You can see a few videos about the bridge’s construction below. This month, during Dutch Design Week, visitors had a chance to walk across the bridge to generate some of the first live datasets.

Continue reading “3D Printed Bridge Goes Dutch”

This Ukulele Does Chiptunes, And Not Just Because It’s Made Out Of A Game Boy

When you think about singer-songwriters, the name Bob Dylan might come to your mind. You might think about Jeff Buckley, you might think about Hank Williams, Springsteen, David Bowie, or Prince. You’d be wrong. The greatest singer-songwriter of all time is Tiny Tim, the guy who looks like Weird Al traveled in time and did a cameo in Baker-era Doctor Who. Tiny Tim had the voice of an angel, because Mammon and Belial were angels too, I guess. Tiny Tim is also the inspiration behind the current resurgence of the ukulele, the one thing keeping the stringed instrument industry alive today.

Even though Tiny Tim passed in 1996, he would have loved to see this project that brings the ukulele into the late 20th century. It’s a Game Boy, DMG-01, transformed into a playable musical instrument. It’s a functional uke, but it also has electronics to turn this into a chiptune machine.

The first goal of this project was to build a functional ukulele out of a Game Boy case. This was simple enough — the neck was 3D printed, the bridge was screwed in, and the case of the Game Boy was reinforced with some PCB material. So far, this is nothing new; you can get a model for a 3D printed ukulele on Thingiverse.

The second goal of this project was to make this ukulele into a chiptune machine. This means designing a pickup for the strings, and since these are nylon you’re not going to do a magnetic pickup on a ukulele. The first solution was an IR reflectance sensor, which worked but had too high of a power draw. The better solution was a standard flex pressure sensor, which worked well enough. This signal is distorted into a square wave that gives a surprisingly Game Boy-like sound. You can check out the video demo below.

Continue reading “This Ukulele Does Chiptunes, And Not Just Because It’s Made Out Of A Game Boy”

Building A Proof Of Concept Hardware Implant

You’ve no doubt heard about the “hardware implants” which were supposedly found on some server motherboards, which has led to all sorts of hand-wringing online. There’s no end of debate about the capabilities of such devices, how large they would need to be, and quite frankly, if they even exist to begin with. We’re through the looking-glass now, and there’s understandably a mad rush to learn as much as possible about the threat these types of devices represent.

EEPROM (left) can be edited to enable SMBus access on this card (header to the right)

[Nicolas Oberli] of Kudelski Security wanted to do more than idly speculate, so he decided to come up with a model of how an implanted hardware espionage device could interact with the host system. He was able to do this with off the shelf hardware, meaning anyone who’s so inclined can recreate this “Hardware Implant Playset” in their own home lab for experimentation. Obviously this is not meant to portray a practical attack in terms of the hardware itself, but gives some valuable insight into how such a device might function.

One of the most obvious attack vectors for hardware implants is what’s known as the Baseboard Management Controller (BMC). This is a chip used on modern motherboards to allow for remote control and monitoring of the system’s hardware, and promises to be a ripe target for attackers. There are a few sideband channels which can be used by the BMC chip to talk to other chips. To keep things simple [Nicolas] focused on the older I2C-derived SMBus (rather than the newer and more complex NC-SI), demonstrating what can be done once you have control of that bus.

Only problem was, he didn’t have a motherboard with a BMC to experiment with. After a little research, the answer came in the form of the Intel EXPI9301CTBLK network card, which features the 82574L SMBus chip. This allows for experimenting with a subset of SMBus functionality on any machine with a PCI-E slot. Even better, the card has an SMBus header on the top to plug into. [Nicolas] describes in detail how he enabled the SMBus interface by modifying the card’s EEPROM, which then allowed him to detect it with his HydraBus.

With the hardware setup, the rest of the write-up focuses on what you can do with direct control of SMBus on the network card. [Nicolas] demonstrates not only creating and sending Ethernet packets, but also intercepting an incoming packet. In both cases, a running instance of tcpdump on the host computer fails to see the packets even exist.

He goes on to explain that since SMBus is very similar to I2C and only requires four wires, the techniques shown could easily be moved from the Hydrabus dev board used in the demo, to a small microcontroller like the ATtiny85. But you would still need to find a way to add that microcontroller directly onto the network card without it being obvious to the casual observer.

Our previous coverage of suspected hardware implants sparked considerable discussion, and it looks like no matter what side of the fence you’re on, the debate isn’t going away anytime soon.