A Rotary Axis CNC Machine

There’s a certain class of parts that just can’t be made on a standard 3-axis mill, nor with a 3D printer or a lathe. These parts — weird screws, camshafts, strange gears, or simply a shaft with a keyway (or two) — can really only be made with a rotary axis on a CNC machine. Sure, you could buy a rotary axis for a Haas or Tormach for thousands of dollars, or you could build your own. That’s exactly what [Adam Zeloof] and [Matt Martone] did with their project at this year’s World Maker Faire in New York. It’s the Rotomill, a simple three-axis CNC machine, with a rotary axis, that just about anyone can build.

The design of the Rotomill uses a standard, off-the-shelf Makita rotary tool for the spindle, and uses leadscrews to move the X and Z axes around with NEMA 24 stepper motors. The A axis — the rotary bit — is driven through a worm gear, also powered by a NEMA 24. Right now this provides more than enough power to cut foam, plastic, and wood, and should be enough to cut aluminum. That last feat is as yet untested, but the design is open enough that a much more powerful spindle could be attached.

The software for this machine is a bit weird. For most CNC machines with a rotary axis, the A axis is treated as such — a rotary axis. For the Rotomill, [Adam] and [Matt] are generating G Code like it’s a normal Cartesian machine, only with one axis ‘wrapped’ around itself. This is all done through Autodesk HSM, and a properly configured Arduino running GRBL makes sense of all this arcane geometry.

It’s a great looking machine, and the guys behind it say it’s significantly less expensive than any other machine with a rotary axis. That’s to be expected, as it’s basically a five axis mill with two axes removed. Still, this entire project was built for about $2000, and some enterprising salvage and hacking could bring that price down a bit.

Planned Obsolescence Isn’t A Thing, But It Is Your Fault

The common belief is that big companies are out to get the little people by making products that break after a short period, or with substantially new features or accessories that make previous models obsolete, requiring the user to purchase a new model. This conspiracy theory isn’t true; there’s a perfectly good explanation for this phenomenon, and it was caused by the consumers, not the manufacturers.

When we buy the hottest, shiniest, smallest, and cheapest new thing we join the wave of consumer demand that is the cause of what often gets labelled as “Planned Obsolescence”. In truth, we’re all to blame for the signals our buying habits send to manufacturers. Dig in and get your flamewar fingers fired up.

Continue reading “Planned Obsolescence Isn’t A Thing, But It Is Your Fault”

Tearing Into A $1.3 Million Oscilloscope

Most hackers are rankled by those “Warranty Void If Broken” seals on the sides of new test equipment. Even if they’re illegal, they at least put the thought in your head that the space inside your new gear is off-limits, and that prevents you from taking a look at what’s inside. Simply unacceptable.

[Shahriar] has no fear of such labels and tears into just about everything that comes across his bench. Including, most recently, a $1.3 million 110-GHz oscilloscope from Keysight. It’s a teardown that few of us will ever get the chance to do, and fewer still would be brave enough to attempt. Thankfully he does, and the teardown video below shows off the remarkable engineering that went into this monster.

The numbers boggle the mind. Apart from the raw bandwidth, this is a four-channel scope (althought the unit [Shahriar] tested is a two-channel) that doesn’t split its bandwidth across channels. The sampling rate is 256 GS/s and the architecture is 10-bits, so this thing is dealing with 10 terabits per second. We found the extra thick PCBs, which are perhaps 32-layer boards, to be especially interesting, and [Shariar]’s tour of the front end was fascinating.

It all sounds like black magic at first, but he really makes the technology approachable, and his appreciation for fine engineering is obvious. If you’ve got even a passing interest in RF electronics you should check it out. You might want to brush up on microwave topics first, though; this Doppler radar teardown might help.

Continue reading “Tearing Into A $1.3 Million Oscilloscope”

Feeding Dogs Over Twitch Is Latest E-Sport Craze

The modern social-networking fueled Internet loves two things more than anything: pets, and watching other people do stuff. There’s probably a scroll tucked behind a filing cabinet at Vint Cerf’s house that foretells anyone who can harness these two elements will gain control of the Internet Ready Player One style. If so, we’re thinking [Tyler Pearce] is well on his way to ascending the throne.

In an effort to make the Overwatch Twitch streams of his betrothed even more enticing, [Tyler] came up with a way for viewers to feed their dog Larry by dropping a command in the chat. There’s a surprisingly complex dance of software and hardware to make this reliable and visually appealing, but it’s worth it as showmanship is important in the brave new world of competitive e-sports. We’re assuming that’s what it says in the issue of ESPN Magazine with the Fortnite player on the cover, but nobody at Hackaday would qualify for a subscription to it so we don’t really know for sure.

A server running on the computer provides a slick administrative dashboard for the treat system, including a running log of who fed Larry and when. There’s also a number of checks in place to prevent too many treats being dispensed in a short time period, and to keep an individual from spamming the system.

On the hardware side, he’s using two NodeMCU ESP8266 microcontollers connected to a local MQTT broker: one to handle the lighting and one to run the 3D printed auger that actually pushes the food out. The printed auger is powered by a standard hobby servo, and even includes an IR sensor to automatically stop spinning when it detects a treat has been dispensed. [Tyler] reports the auger works quite well, though does have a tendency to jam up if overfilled.

We’ve seen all manner of automated pet feeders over the years, even ones with their own email accounts. So it was probably only a matter of time until they came to Twitch. If you can install Linux with it, why not use it to feed your dog? Or somebody else’s, as the case may be.

World’s Smallest LED Blinky

[Mike Harrison] is known for incredibly tiny soldering. Now he’s claiming a “world’s smallest” in the form of a stand-alone LED blinker, and we think he’s got the record.

He brought it along with him to Friday’s Beagleboard Bring-a-Hack, and we got a close look at the diminutive assembly. The project was dreamed up when [Mike] saw an announcement from Seiko about a new supercapacitor in a tiny package (likely the CPH3225A giving the blinky a footprint of 3.2 x 2.5 mm). With that in hand he added a PIC 10f322 microcontroller in a SOT23 package, an 0603 smoothing capacitor, and an SMD LED.

With such a tiny package, the trickiest part is figuring out how to charge that supercap. [Mike] used a drill and hand files to make a square hole in a CR2032 battery holder to serve as a jig. The bottom of the supercap rests against the battery as a pogo pin makes the second connection to a terminal on the side of his assembly. It charges quickly and will happily blink away for about six minutes after charging.

Mike set out to make two of these, but dropped the second supercap when at his workbench to be forever lost in the detritus common to every electronics workshop. When he first pulled it out at the meetup we were on a rooftop terrace and we were more than a bit concerned that this would just blow away. How do you begin to fabricate such a tiny assembly? He used UV cured epoxy to glue them together first, then somehow completed the soldering by hand!

Continue reading “World’s Smallest LED Blinky”

The Tiniest Computer Vision Platform Just Got Better

The future, if you believe the ad copy, is a world filled with cameras backed by intelligence, neural nets, and computer vision. Despite the hype, this may actually turn out to be true: drones are getting intelligent cameras, self-driving cars are loaded with them, and in any event it makes a great toy.

That’s what makes this Kickstarter so exciting. It’s a camera module, yes, but there are also some smarts behind it. The OpenMV is a MicroPython-powered machine vision camera that gives your project the power of computer vision without the need to haul a laptop or GPU along for the ride.

The OpenMV actually got its start as a Hackaday Prize entry focused on one simple idea. There are cheap camera modules everywhere, so why not attach a processor to that camera that allows for on-board image processing? The first version of the OpenMV could do face detection at 25 fps, color detection at more than 30 fps, and became the basis for hundreds of different robots loaded up with computer vision.

This crowdfunding campaign is financing the latest version of the OpenMV camera, and there are a lot of changes. The camera module is now removable, meaning the OpenMV now supports global shutter and thermal vision in addition to the usual color/rolling shutter sensor. Since this camera has a faster microcontroller, this latest version can support multi-blob color tracking at 80 fps. With the addition of a FLIR Lepton sensor, this camera does thermal sensing, and thanks to a new library, the OpenMV also does number detection with the help of neural networks.

We’ve seen a lot of builds using the OpenMV camera, and it’s getting ot the point where you can’t compete in an autonomous car race without this hardware. This new version has all the bells and whistles, making it one of the best ways we’ve seen to add computer vision to any hardware project.

Hackaday Links Column Banner

Hackaday Links: September 23, 2018

In the spirit of Nintendo’s NES mini and Super NES mini, Sony is releasing a tiny version of the Playstation. It’s a hundred bucks in December and it comes with Final Fantasy VII, what more do you want? While that’s marginally cool, check out the forums and comments of gaming blogs for some real entertainment — those damn kids won’t get off my lawn and are complaining the included controllers don’t have analog sticks.

This man has solved the range problem for electric cars. He hacked a Prius to run off the overhead wires for San Francisco’s Muni system. Yes, if you want something amazing, here it is. The pantograph/pole/whatever it’s called was acquired ‘somehow’, with the implication that it was stolen. The overhead lines are 600 V, and a Prius’ battery pack is usually 273 V; apparently he “uses up the excess power on a whole lot of resistors, full-time headlights, and a kick-ass stereo system.”. Dear lord, we need a real technical write-up for this one.

get on my level

Humanity’s most impressive accomplishment to date is Twitch Plays Pokemon. This was a cooperative game of Pokemon, with thousands of people mashing buttons. Everyone (eventually) beat the Final Four, but the most impressive part was the Power Plant. We made it through the Power Plant, and we got Zapdos. I was there. It was incredible. Twitch Plays Pokemon has been reborn and rebranded several times, but this one might be good: Twitch Programs a Commodore 64. It’s a (virtual) C64 hooked up to Twitch. If there’s one person watching the channel, you can slowly type out a BASIC program one… character… at… a… time. If there’s more than one person watching, the entire ordeal devolves into the horrors of a democracy, but you might be able to get something done. Have fun.