Simple Electric Bike Conversion From 3D-Printed Parts

Challenge: Perform an electric conversion on a bicycle. Problem: No significant metal working skills or equipment. Solution: 3D print everything needed to electrify the bike.

At least that’s the approach that [Tom Stanton] took to his electric bike build. Having caught the electric locomotion bug on a recent longboard build, [Tom] undertook the upgrade of a cheap “fixie,” or fixed-gear bike. His delta printer was big enough for the motor mount and weather-resistant ESC enclosure, but he needed to print the drive pulley in four quadrants that were later glued together. We can’t say we hold much faith in the zip ties that transmit all the torque through the rear wheel’s spokes, but as a proof of concept it seems sturdy enough. With a throttle from an electric scooter and a battery in a saddle bag, the bike turns in pretty decent performance — at least after a minor gearing change. And everything blends in or accents the black frame of the bike, so it’s a good-looking build to boot.

Want to catch the cheap electric personal transportation bug too? Check out this electric longboard, or this all-terrain hoverboard.

Continue reading “Simple Electric Bike Conversion From 3D-Printed Parts”

Go Small, Get Big: The Hack That Revolutionized Bioscience

Few people outside the field know just how big bioscience can get. The public tends to think of fields like physics and astronomy, with their huge particle accelerators and massive telescopes, as the natural expressions of big science. But for decades, biology has been getting bigger, especially in the pharmaceutical industry. Specialized labs built around the automation equipment that enables modern pharmaceutical research would dazzle even the most jaded CERN physicist, with fleets of robot arms moving labware around in an attempt to find the Next Big Drug.

I’ve written before on big biology and how to get more visibility for the field into STEM programs. But how exactly did biology get big? What enabled biology to grow beyond a rack of test tubes to the point where experiments with millions of test occasions are not only possible but practically required? Was it advances in robots, or better detection methodologies? Perhaps it was a breakthrough in genetic engineering?

Nope. Believe it or not, it was a small block of plastic with some holes drilled in it. This is the story of how the microtiter plate allowed bioscience experiments to be miniaturized to the point where hundreds or thousands of tests can be done at a time.

Continue reading “Go Small, Get Big: The Hack That Revolutionized Bioscience”

A Minority Report Arduino-Based Hand Controller

Movies love to show technology they can’t really build yet. Even in 2001: A Space Oddessy (released in 1968), for example, the computer screens were actually projected film.  The tablet they used to watch the news looks like something you could pick up at Best Buy this afternoon. [CircuitDigest] saw Iron Man and that inspired him to see if he could control his PC through gestures as they do on that film and so many others (including Minority Report). Although he calls it “virtual reality,” we think of VR as being visually immersed and this is really just the glove, but it is still cool.

The project uses an Arduino on the glove and Processing on the PC. The PC has a webcam which tracks the hand motion and the glove has two Hall effect sensors to simulate mouse clicks. Bluetooth links the glove and the PC. You can see a video of the thing in action, below.

Continue reading “A Minority Report Arduino-Based Hand Controller”

Teaching STEAM With Fidget Spinners

A huge focus of the maker revolution has been a focus on STEAM education, or rather an education in science, technology, engineering, art, and mathematics. We’ve seen innumerable kits and tools designed to introduce children to STEAM apps, ranging from electronic Lego blocks to robotics kits built around interlocking plastic bricks. These are just a passing fad, but finally, we have what looks like a winner: a STEAM education fidget spinner.

Fidget spinners have spun into our hearts like a shuriken over the last few months, and [MakerStorage]’s latest project taps into the popularity of fidget spinners to put an educational — wait for it — spin on the usual STEAM education toolkit. This is exactly what the maker revolution needs.

On board this educational fidget spinner are a few RGB LEDs and an Arduino-compatible microcontroller development board. A coin cell battery powers everything, and in an interesting advancement of fidget spinner science, [MakerStorage] seems to be using a flanged bearing with a PCB. We’re seeing the march of technology right before our eyes, people. Right now there are two versions of the educational fidget spinner, one with an Arduino Pro Micro soldered to the board, and another with an ATMega-derived custom circuit on the board along with a PCB USB connector.

Haven’t gotten enough fidget spinner news? OH BOY does Hackaday have you covered. Here’s the Internet of Fidget Spinners, a fidget spinner with an embedded WiFi microcontroller and a bunch of blinky LEDs. Those LEDs form a Persistence of Vision display. It’s amazing, astonishing, and it’s in fidget spinner format. Bored with your oscilloscope? Turn it into a fidget spinner tachometer. There’s literally nothing that can’t be applied to the world of fidget spinners.

Interfacing A Retro Controller Using The USBASP

An ISP dongle is a very common piece of equipment on a maker’s bench. However, its potential as a hackable device is generally overlooked. The USBASP has an ATmeg8L at its heart and [Robson] decided that this humble USB device could be used as an interface between his PC and a SNES Joypad.

A SNES controller required three pins to communicate with a host: clock, data and latch. In his hack, [Robson]  connects the controller to the ISP interface using a small DIY adaptor and programs the AVR using the V-USB library. V-USB is a software USB library for small microcontrollers and comes in pretty handy in this instance.

[Robson] does a pretty good job of documenting the entire process of creating the interface which includes the USB HID code as well as the SNES joypad serial protocol. His hack works on both Windows and Linux alike and the code is available on GitHub for download.

Simple implementation like this project are a great starting point for anyone looking to dip their toes in the DIY USB device pool. Veterans may find a complete DIY joystick more up their alley and will be inspired by some plastic techniques as well.

Adding A Riving Knife For Table Saw Safety

What in the world is a riving knife? Just the one thing that might save you from a very bad day in the shop. But if your table saw doesn’t come with one, fret not — with a little wherewithal you can add a riving knife to almost any table saw.

For those who have never experienced kickback on a table saw, we can assure you that at a minimum it will set your heart pounding. At the worst, it will suck your hand into the spinning blade and send your fingers flying, or perhaps embed a piece of wood in your chest or forehead. Riving knives mitigate such catastrophes by preventing the stock from touching the blade as it rotates up out of the table. Contractor table saws like [Craft Andu]’s little Makita are often stripped of such niceties, so he set about adding one. The essential features of a proper riving knife are being the same width as the blade, wrapping closely around it, raising and lowering with the blade, and not extending past the top of the blade. [Craft Andu] hit all those points with his DIY knife, and the result is extra safety with no inconvenience.

It only takes a few milliseconds to suffer a life-altering injury, so be safe out there. Even if you’re building your own table saw, you owe it to yourself.

Continue reading “Adding A Riving Knife For Table Saw Safety”

Building A K9 Toy

[James West] has a young Doctor Who fan in the house and wanted to build something that could be played with without worrying about it being bumped and scratched. So, instead of creating a replica, [James] built a simple remote controlled K9 toy for his young fan.

K9 was a companion of the fourth Doctor (played by Tom Baker) in the classic Doctor Who series. He also appeared in several spin-offs. A robotic dog with the infinite knowledge of the TARDIS at hand, as well as a laser, K9 became a favorite among Who fans, especially younger children. [James] wanted his version of K9 to be able to be controlled by a remote control and be able to play sounds from the TV show.

Using some hand-cut acrylic, [James] built K9’s body, then started on plans for the motion control and brains. [James] selected the Raspberry Pi Zero for the controller board, a Speaker pHat for the audio, a couple of motors to move K9 around, and a motor controller. K9 is controlled by a WiiMote and has a button on his back to start pairing with the WiiMote (K9 answers with “Affirmative” when the pairing is successful.) When it came to the head, [James] was a little overwhelmed by trying to make the head in acrylic, so he got some foam board and used that instead. A red LED in the head lights up through translucent red acrylic.

It’s a great little project and [James] has put the Python code up on Github for anyone interested. We’ve had a couple of robot dog projects on the site over the years, like this one and this one.

Continue reading “Building A K9 Toy”