RC Paper Airplane From Guts Of Quadcopter

Mini indoor drones have become an incredibly popular gift in the last few years since they’re both cool and inexpensive. For a while they’re great fun to fly around, until the inevitable collision with a wall, piece of furniture, or family member. Often not the most structurally sound of products, a slightly damaged quad can easily be confined to a cupboard for the rest of its life. But [Peter Sripol] has an idea for re-using the electronics from a mangled quad by building his own RC controlled paper aeroplane.

[Peter] uses the two rear motors from a mini quadcopter to provide the thrust for the aeroplane. The key is to remove the motors from the frame and mount them at 90 degrees to their original orientation so that they’re now facing forwards. This allows the drone’s gyro to remain facing upwards in its usual orientation, and keep the plane pointing forwards.

The reason this works is down to how drones yaw: because half of the motors spin the opposite direction to the other half, yaw is induced by increasing the speed of all motors spinning in one direction, mismatching the aerodynamic torques and rotating the drone. In the case of the mini quadcopter, each of the two rear motors spin in different directions. Therefore, when the paper plane begins to yaw off-centre, the flight controller increases power to the appropriate motor.

Mounting the flight controller and motors to the paper plane can either be achieved using a 3D-printed mount [Peter] created, or small piece of foam. Shown here is the foam design that mounts the propellers at wing level but the 3D printed version has then under the fuselage and flies a bit better.

Making paper planes too much effort? You could always use the one-stroke paper plane folder, or even the paper plane machine gun.

Continue reading “RC Paper Airplane From Guts Of Quadcopter”

Flite Test Puts A Chair In The Air

The Flite Test crew is well known for putting some crazy flying contraptions together. They’ve outdone themselves this time with a flying IKEA chair. This build began with [Josh] issuing a challenge to [Stefan]. Take a standard IKEA ladderback chair and make it fly– in less than six hours. With such a tight schedule, measuring twice and cutting once was right out the window. This was a hackathon-style “throw it together and hope it works” build.

The chair was plenty sturdy, so it became the core of the fuselage. [Stefan] grabbed the wing from a previous plane and placed it on the seat of the chair. Two carbon fiber rods drilled into the seat frame formed a tail boom. The tailfeathers were built from Flite Test foam – paper coated foam-core board.

With the structure complete, [Stefan] and his team added servos for control, a beefy motor for power, and some big LiPo batteries. The batteries hung from the bottom of the chair to keep the center of gravity reasonable.

When the time came for the maiden flight, everyone was expecting a spectacular failure. The chair defied logic and leaped into the air. It flew stable enough for [Josh] to take his fingers off the sticks. The pure excitement of seeing a crazy build that works is on full display as the entire Flite Test crew literally jumps for joy. [Alex] even throws in a cartwheel. This is the kind of story we love to cover here at Hackaday – watching a completely nutty build come together and perform better than anyone expected.

Continue reading “Flite Test Puts A Chair In The Air”

3D Printing Air Quality Study

You’ll often hear about some study in the media and then — on examination — find it doesn’t really apply to your situation. Sure, substance X causes cancer in rats, but they ate 8 pounds of it a day for a decade. That’s why we were glad to see [Chuck] post a series of videos about 3D printing air quality based on his practical experience. You can see the summary video, below.

[Chuck] is quick to point out that he isn’t a doctor or even a chemist. He also admits the $100 meter from IGERESS he is using isn’t necessarily high-quality test gear. Still, the data is a good guideline and he did get repeatable results.

Continue reading “3D Printing Air Quality Study”

Portable Photo Booth Named Buzz

We’re all used to posing for a picture — or a selfie — but there’s something about photo booths that make getting your photo taken an exciting and urgent affair. To make this experience a bit easier to tote about, Redditor [pedro_g_s] has laboriously built, from the ground up, a mobile photo booth named Buzz.

He needed a touchscreen, a Raspberry Pi, almost definitely a webcam, and a 3D printer to make a case — although any medium you choose will do — to build this ‘booth.’ That said, he’s built the app in a way that a touchscreen isn’t necessary, but carting around a mouse to connect to and operate your portable photo booth seems a bit beside the point. On the back end, he used Electron to code the photo booth app, React helped him build a touchscreen UI, and Yarn kept the necessary dependencies in order.

Operation is simple, and every time a photo is taken it is sent to and collated within a previously set-up email service. To set it up, [pedro_g_s] is here to guide you through the process.

Continue reading “Portable Photo Booth Named Buzz”

Today: Hackaday Is At UK Maker Faire Plus Afterparty

As a finale to our month on the road through parts of the British Isles, we’ll be at UK Maker Faire this weekend, and we’ll also be hosting our final bring-a-hack at Maker Space Newcastle this evening, Saturday the 28th of April.

For the rest of the weekend’s UK Maker Faire, held at Newcastle’s Life Science Centre, you’ll find both Hackaday and Tindie at our booth number M118, and if you’re lucky you might even snag one of the [Brian Benchoff]-designed Tindie blinkie badge kits.

A few familiar faces from the Brits among our wider community will have their own booths, for example [Spencer] will be there with the RC2014 Z80-based retrocomputer, Rachel “Konichiwakitty” Wong will have her collection of wearables but no 3D-printed eyeballs, and Tindie seller extraordinaire [Partfusion], whose bone conduction skull radio we saw at EMF 2016 (Correction: the bone conduction radio was the work of fellow TOG stalwart [Jeffrey Roe]) and who also spoke at our Dublin Unconference.

There is still time to make your way to Geordieland to attend the event if you haven’t made plans already, and should you bring a conveniently portable hack with you then we’d love to see it. Especially if it’s a Hackaday Prize entry.

Clive Sinclair, The Other Author

A reasonable selection of the Hackaday readership will have had their first experiences of computing on an 8-bit machine in a black case, with the word “Sinclair” on it. Even if you haven’t work with one of these machines you probably know that the man behind them was the sometimes colourful inventor Clive (now Sir Clive) Sinclair.

The finest in 1950s graphic design, applied to electronics books.
The finest in 1950s graphic design, applied to electronics books.

He was the founder of an electronics company that promised big results from its relatively inexpensive electronic products. Radio receivers that could fit in a matchbox, transistorised component stereo systems, miniature televisions, and affordable calculators had all received the Sinclair treatment from the early-1960s onwards. But it was towards the end of the 1970s that one of his companies produced its first microcomputer.

At the end of the 1950s, when the teenage Sinclair was already a prolific producer of electronics and in the early stages of starting his own electronics business, he took the entirely understandable route for a cash-strapped engineer and entrepreneur and began writing for a living. He wrote for electronics and radio magazines, later becoming assistant editor of the trade magazine Instrument Practice, and wrote electronic project books for Bernard’s Radio Manuals, and Bernard Babani Publishing. It is this period of his career that has caught our eye today, not simply for the famous association of the Sinclair name, but for the fascinating window his work gives us into the state of electronics at the time.

Continue reading “Clive Sinclair, The Other Author”

Coaxing Water From Desert Air

From the windtraps and stillsuits of Dune’s Arrakis, to the moisture vaporators of Tatooine, science fiction has invented fantastic ways to collect the water necessary for life on desert worlds. On Earth we generally have an easier go of it, but water supply in arid climates is still an important issue. Addressing this obstacle, a team of researchers from MIT and the University of California at Berkeley have developed a method to tease moisture out of thin air.

A year after the team first published their idea, they have successfully field-tested their method on an Arizona State University rooftop in Tempe, proving the concept and the potential for scaling up the technology. The device takes advantage of metal-organic framework(MOF) materials with high surface area that are able to trap moisture in air with as little as 10% humidity — even at sub-zero dewpoints. Dispensing with the need for power-hungry refrigeration techniques to condense moisture, this technique instead relies on the heat of the sun — although low-grade heat sources are also a possibility.

Continue reading “Coaxing Water From Desert Air”