Casting Custom Resin Buttons For The Steam Deck

If you play games on multiple consoles, you’re probably familiar with the occasional bout of uncertainty that comes with each system’s unique button arrangement. They’re all more or less in the same physical location, but each system calls them something different. Depending on who’s controller you’re holding, the same button could be X, A, or B. We won’t even get started on colors.

Overhearing her partner wish the buttons on his Steam Deck matched the color scheme of the Xbox, [Gina Häußge] (of OctoPrint fame) decided to secretly create a set of bespoke buttons for the portable system. There was only one problem…she had no experience with the silicone molding process or epoxy resins which would be required for such an operation.

Toothpicks were used to make channels in the mold.

Luckily we have the Internet, and after researching similar projects that focused on other consoles, [Gina] felt confident enough to take apart Steam’s handheld and extract the original plastic buttons. These went into a clever 3D printed mold box, which was small enough to put into a food vacuum container for degassing purposes. The shape of the buttons necessitated a two-piece mold, into which [Gina] embedded two channels: one to inject the resin, and another that would let air escape.

The red, green, blue, and yellow resins were then loaded into four separate syringes and forced into the mold. It’s critically important to get the orientation right here, as each button has a slightly different shape. It sounds like [Gina] might have mixed up which color each button was supposed to be during an earlier attempt, so for the final run she made a little diagram to keep track. After 24 hours she was able to peel the mold apart and get a look at the perfectly-formed buttons, but it took 72 hours before they were really cured enough to move on to the next step.

[Gina] applied the legends with a sheet of rub-on lettering, which we imagine must have been quite tricky to get lined up perfectly. Since the letters would get worn off after a few intense gaming sessions without protection, she finally sealed the surface of each button by brushing on a thin layer of UV resin and curing it with a flashlight of the appropriate wavelength.

There are a fair number of steps involved, and a fair bit of up-front cost to get all the materials together, but there’s no denying the final result looks phenomenal. Especially for a first attempt. We wouldn’t be surprised if the next time somebody wants to head down this particular path, it’s [Gina]’s post that guides them on their way.

New Commodore VIC-20 Build

In a recent episode of [The Retro Shack], a new Commodore VIC-20 is built, using a ‘Vicky Twenty’ replacement PCB by [Bob’s Bits] as the base and as many new components as could be found. The occasion for this was that a viewer had sent in a VIC-20 that turned out to be broken, so in order to diagnose it, building a new one with known working parts seemed incredibly useful.

Advantages of the reproduction PCB are a number of board-level fixes that negate the need for certain bodge wires, while also having footprints for a wider range of round DIN connectors. The non-proprietary ICs were obtained along with other standard parts from a retro computing store, while the proprietary Commodore components were scrounged up from your friendly used component selling sites.

The result is what from the outside looks like a genuine VIC-20, and which should prove to be very useful in diagnosing the broken VIC-20 system in the future, as well as presumably to play some games on.

Continue reading “New Commodore VIC-20 Build”

Broken Genes And Scrambled Proteins: How Radiation Causes Biological Damage

If decades of cheesy sci-fi and pop culture have taught us anything, it’s that radiation is a universally bad thing that invariably causes the genetic mutations that gifted us with everything from Godzilla to Blinky the Three-Eyed Fish. There’s a kernel of truth there, of course. One only needs to look at pictures of what happened to Hiroshima survivors or the first responders at Chernobyl to see extreme examples of what radiation can do to living tissues.

But as is usually the case, a closer look at examples a little further away from the extremes can be instructive, and tell us a little more about how radiation, both ionizing and non-ionizing, can cause damage to biochemical structures and processes. Doing so reveals that, while DNA is certainly in the crosshairs for damage by radiation, it’s not the only target — proteins, carbohydrates, and even the lipids that form the membranes within cells are subject to radiation damage, both directly and indirectly. And the mechanisms underlying all of this end up revealing a lot about how life evolved, as well as being interesting in their own right.

Continue reading “Broken Genes And Scrambled Proteins: How Radiation Causes Biological Damage”

NASA Lunar Probe Finds Out It’s Not Easy Being Green

If you’re a space fan, these are very exciting days. There’s so much happening overhead that sometimes it can be difficult to keep up with the latest news. Artemis I just got back from the Moon, the International Space Station crew are dealing with a busted Soyuz, SpaceX is making incredible progress with their Starship architecture, CubeSats are being flung all over the solar system, and it seems like every month a new company is unveiling their own commercially-developed launch vehicle.

Lunar Flashlight

So with everything going on, we wouldn’t be surprised if you haven’t heard about NASA’s Lunar Flashlight mission. The briefcase-sized spacecraft was launched aboard a special “rideshare” flight of SpaceX’s Falcon 9 rocket back on December 11th — tagging along with two other craft heading to our nearest celestial neighbor, the Japanese Hakuto-R lander, and a small rover developed by the United Arab Emirates. There was a time when a launch like that would have been big news, but being that it was only the second of seven launches that SpaceX performed in December alone, it didn’t make many headlines.

But recently, that’s started to change. There’s a growing buzz around Lunar Flashlight, though unfortunately, not for the reasons we’d usually hope. It seems the diminutive explorer has run into some trouble with its cutting-edge “green” propellant system, and unless the issue can be resolved soon, the promising mission could come to an end before it even had a chance to start.

Continue reading “NASA Lunar Probe Finds Out It’s Not Easy Being Green”

Hackaday Podcast 202: CNC Monks, Acrobot, Bootleg Merch, And The Rise And Fall Of Megahex

This week, Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos stood around and marveled at machinery in its many forms, from a stone-cutting CNC to an acrobatic robot to an AI-controlled Twitch v-tuber. But before all of that, we took a look at the winners of our FPV Vehicle Contest, poured one out for Google Stadia, and Elliot managed to stump Kristina once again with this week’s What’s That Sound. Will you fare better?

Later, we drooled over an open-source smart watch, argued screen printing versus stenciling when it comes to bootleg Hackaday merch, and got into the finer points of punycodes.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

And/or download it and listen offline.

Continue reading “Hackaday Podcast 202: CNC Monks, Acrobot, Bootleg Merch, And The Rise And Fall Of Megahex”

What Else Is An M.2 WiFi Slot Good For?

Many mainboards and laptops these days come with a range of M.2 slots, with only a subset capable of NVME SSDs, and often a stubby one keyed for ‘WiFi’ cards. Or that’s what those are generally intended to be used for, but as [Peter Brockie] found out when pilfering sites like AliExpress, is that you can get a lot of alternate expansion cards for those slots that have nothing to do with WiFi.

Why this should be no surprise to anyone who knows about the M.2 interface is because each ‘key’ type specifies one or more electrical interfaces that are available on that particular M.2 slot. For slots intended to be used with NVME SSDs, you see M-keying, that makes 4 lanes of PCIe available. The so-called ‘WiFi slots’ on many mainboards are keyed usually for A/E, which means two lanes of PCIe, USB 2.0, I2C and a few other, rather low-level interfaces. What this means is that you can hook up any PCIe or or USB (2.0) peripheral to these slots, as long as the bandwidth is sufficient.

What [Peter] found includes adapter cards that add Ethernet (1 Gb, 2.5 Gb), USB 2.0 ports, SIM card (wireless adapter?), an SFP fiber-based networking adapter, multiple M.2 to 2+ SATA port adapters, tensor accelerator chips (NPUs) and even a full-blown M.2 to x16 PCIe slot adapter. The nice thing about this is that if you do not care about using WiFi with a system, but you do have one of those ports lounging about uselessly, you could put it to work for Ethernet, SFP, SATA or other purposes, or just for hooking up internal USB devices.

Clearly this isn’t a market that has gone unexploited for very long, with a bright outlook for one’s self-designed M.2 cards. Who doesn’t want an FPGA device snuggled in a PCIe x2 slot to tinker with?

Continue reading “What Else Is An M.2 WiFi Slot Good For?”

Excuse Me, Your Tie Is Unzipped

If you ask your typical handyperson what’s the one thing you need to fix most things, the answer might very well be duct tape. But second place — and first place in some circles — would have to be zip ties. These little wonders are everywhere if you look for them. But they are a relatively recent invention and haven’t always had the form they have today.

The original zip tie wasn’t called a zip tie or even a cable tie. In 1958 they were called Ty-Raps and produced by a company called Thomas and Betts. Originally meant to improve aircraft wiring harnesses, they found their way into various electronic equipment and packaging uses. But they’ve also become helpful in very unusual places too. A policeman trying to round up rioters would have problems carrying more than a few conventional handcuffs. But flexible cuffs based on zip ties are lightweight and easy to carry. Colon surgeons sometimes use a modified form of zip tie during procedures.

History

Maurus Logan worked for the Thomas and Betts company. In 1956, he was touring an aircraft manufacturing plant. Observing a wiring harness being put together on a nail board, similar to how car harnesses are made, he noted that the cables were bundled with waxed twine or nylon cord. A technician had to tie knots in the cord, sometimes cutting their fingers and often developing calluses. In addition, the twine was prone to fungal growth, requiring special treatment.

Logan kept turning the problem over in his mind and tried various approaches. By 1958, he had a patent for the Ty-Rap. The tie was lightweight, easy to install, easy to remove, and inexpensive.

Continue reading “Excuse Me, Your Tie Is Unzipped”