The First PipBoy We’ll See This Year

You heard that we’re shutting down Hackaday on November 11, 2015, right? That’s the release of Fallout 4, and trust me: I’m not getting anything done that day.  A new game in the Fallout series means more power armor cosplay builds, and hundreds of different wearable electronics from the friendly folks at Vault-Tec. I speak of the PipBoy, the wrist-mounted computer of the Fallout series, and [THEMCV] built the first one we’ll see this year. It won’t be the last.

The PipBoy [THEMCV] created is the 3000a model, the same one found in Fallout 3 and New Vegas. We’ve seen a few real-live versions of the PipBoy before; this one used the PipBoy prop that came with the Amazon exclusive special edition of Fallout 3. Things have changed in the years since the release of Fallout 3, and  to build his PipBoy, [THEMCV] just bought one from Shapeways.

The electronics consist of a Raspberry Pi Model A, 3.5″ LCD, a battery pack, and a great piece of software to emulate the software of the PipBoy 3000. It looks great, but [THEMCV] still needs to find a few retrofuturistic buttons and dials to complete the PipBoy experience.

Video below.

Continue reading “The First PipBoy We’ll See This Year”

RetroPie Game Gear

RetroPie Meets Game Gear, Again

If you’re a fan of video game systems of yesteryear then you are probably familiar with RetroPie. For those who aren’t, RetorPie is a collection of software and video game emulators that can run on a Raspberry Pi. The package makes it easy to get your fix of old games without having to own a bunch of consoles or loose your breath blowing on cartridges.

[brooksyx] already had a broken Game Gear, Raspberry Pi and a 4.3 inch LCD screen kicking around so he thought it would be a good idea to put them together into a handheld RetroPie. Clearly, the new screen was not going to fit in the old screen’s place. The Game Gear’s case was cut and the bezel from the new LCD screen was epoxied in place, gaps filled and finally sanded.

RetroPie Game Gear

 

The screen is not the only modifications done to the case. Down on the bottom right of the case front [brooksyx] added 4 buttons for the N64 C-buttons. Out back the battery compartments and cartridge slot were filled in.

This project isn’t done yet and we are excited to see how it comes out. If you’re digging this RetroPie portable, you may like this Game Gear with an unmodified case or this large-screened Game Boy.

Mustachioed Nintendo Virtual Boy Gone Augmented Reality

Some people just want to watch the world burn. Others want to spread peace, joy and mustaches. [Joe Grand] falls into the latter group this time around. His latest creation is Mustache Mayhem, a hack, video game, and art project all rolled into one. This is a bit of a change from deconstructing circuit boards or designing electronic badges, but not completely new for [Joe], who wrote SCSIcide and Ultra SCSIcide for the Atari 2600 back in the early 2000’s.

Mustache Mayhem is built into a Nintendo Virtual Boy housing. The Virtual Boy itself was broken, and unfortunately was beyond repair. [Joe] removed most of the stock electronics and added a BeagleBone Black, Logitech C920 webcam, an LCD screen and some custom electronics. He kept the original audio amplifier, speakers, and controller connector. Angstrom Linux boots into [Joe’s] software, which uses OpenCV to detect faces and overlay mustaches. Gameplay is simple: Point the console at one or more faces. If you see a mustache, press the A button on the controller! The more faces and mustaches on-screen at once, the more points, or “mojo” the player gets. The code is up on Github, and can be built with Xcode targeted to the Mac, or directly on the BeagleBone Black.

[Joe’s] goal for the project was to make a ridiculous game that looks like it could have come out in the 90’s. He also used Mustache Mayhem as a fun way to learn some new skills which will come in handy for more serious projects in the future.

We caught up with [Joe] for a quick interview about his new creation.

How did you come up with the idea for Mustache Mayhem?

blockI was selling a bunch of my video game collection at PRGE (Portland Retro Gaming Expo) a few years ago and had a broken Virtual Boy that no one bought. A friend of mine was at the table and said I had to do something with it. I thought “People wear cosplay and walk around at conventions, so what if I could do something with the Virtual Boy that you could walk around with?” That was the seed.

A few months later, Texas Instruments sent me the original production release of the BeagleBone Black (rev. A5A). Eighteen months after that I actually started the project. The catalyst was to do something for an upcoming Portland, OR art show (Byte Me 4.0), which is an annual event that shows off interactive technology-based artwork. I wrote up a little description and got accepted. I had less than 2 months to actually get things working and it ended up taking about a month of full-time work. It was much more work than I expected for such a silly project. I originally was going to do something along the lines of walking around in a Doom-like perspective and shooting people when their faces were detected.

That would be pretty darn cool. How did you get from Doom to Mustaches? 

I saw a TI BeagleBoard demo called “boothstache” which drew mustaches on faces and tweeted the pictures. I thought that doing something non-violent with mustaches would be more suitable (and funny) to actually show my kids. I also secretly wanted to use this project as a way to experiment with Linux, write some code, and learn about face detection and image processing with OpenCV, which I plan to use for some actual computer security research in the future. Mustache Mayhem turned out to be a super cool project and I’m really happy with it. I sort of feel guilty spending so much time on it, since it’s basically just a one-off prototype, but I just got so obsessed with making it exactly as I wanted.

You mentioned on your website that Mustache was “designed to challenge the paradigms of personal privacy and entertainment.” What exactly did you mean there?

Continue reading “Mustachioed Nintendo Virtual Boy Gone Augmented Reality”

Mario Hack

Reprogramming Super Mario World From Inside The Game

[SethBling] recently set a world record speed run of the classic Super Nintendo game Super Mario World on the original SNES hardware. He managed to beat the game in five minutes and 59.6 seconds. How is this possible? He actually reprogrammed the game by moving specific objects to very specific places and then executing a glitch. This method of beating the game was originally discovered by Twitch user [Jeffw356] but it was performed on an emulator. [SethBling] was able to prove that this “credits warp” glitch works on the original hardware.

If you watch the video below, you’ll see [SethBling] visit one of the first available levels in the game. He then proceeds to move certain objects in the game to very specific places. What he’s doing here is manipulating the game’s X coordinate table for the sprites. By moving objects to specific places, he’s manipulating a section of the game’s memory to hold specific values and a specific order. It’s a meticulous process that likely took a lot of practice to get right.

Once the table was setup properly, [SethBling] needed a way to get the SNES to execute the X table as CPU instructions. In Super Mario World, there are special items that Mario can obtain that act as a power up. For example, the mushroom will make him grow in size. Each sprite in the game has a flag to tell the SNES that the item is able to act as a power up. Mario can either collect the power up by himself, or he can use his friendly dinosaur Yoshi to eat the power up, which will also apply the item’s effects to Mario.

The next part of the speed run involves something called the item swap glitch. In the game, Mario can collect coins himself, or Yoshi can also collect them by eating them. A glitch exists where Yoshi can start eating a coin, but Mario jumps off of Yoshi and collects the coin himself simultaneously. The result is that the game knows there is something inside of Yoshi’s mouth but it doesn’t know what. So he ends up holding an empty sprite with no properties. The game just knows that it’s whatever sprite is in sprite slot X.

Now comes the actual item swap. There is an enemy in the game called Chargin’ Chuck. This sprite happens to have the flag set as though it’s a power up. Normally this doesn’t matter because it also has a set flag to tell the game that it cannot be eaten by Yoshi. Also, Chuck is an enemy so it actually hurts Mario rather than act as a power up. So under normal circumstances, this sprite will never actually act as a power up. The developers never programmed the game to properly handle this scenario, because it was supposed to be impossible.

If the coin glitch is performed in a specific location within the level, a Chargin’ Chuck will spawn just after the coin is collected. When the Chuck spawns, it will take that empty sprite slot and suddenly the game believes that Yoshi is holding the Chuck in his mouth. This triggers the power up condition, which as we already know was never programmed into the game. The code ends up jumping to an area of memory that doesn’t contain normal game instructions.

The result of all of this manipulation and glitching is that all of the values in the sprite X coordinate table are executed as CPU instructions. [SethBling] setup this table to hold values that tell the game to jump to the end credits. The console executes them and does as commanded, and the game is over just a few minutes after it began. The video below shows the speed run but doesn’t get too far into the technical details, but you can read more about it here.

This isn’t the first time we’ve seen this type of hack. Speed runs have been performed on Pokemon with very similar techniques. Another hacker managed to program and execute a version of single player pong all from within Pokemon Blue. We can’t wait to see what these game hackers come up with next. Continue reading “Reprogramming Super Mario World From Inside The Game”

Arm Mounted Computer

Yet Another Awesome Working Prototype Of A PipBoy 3000

When we’re not busy writing up features on Hack a Day, some of the writers here have some pretty impressive projects on the go. One of our own, [Will Sweatman], just put the finishing touches on this amazing (and functional!) Pipboy 3000!

The funny thing is, [Will] here isn’t actually a very big gamer. In fact, he hasn’t even played Fallout. But when a friend queried his ability to build this so called “PipBoy 3000”, [Will] was intrigued.

His research lead him full circle, right back to here at Hack a Day. We’ve covered several PipBoy builds over the years, and [Will] fell in love with [Dragonator’s] 3D printed version — it was the perfect place to start. You see, [Dragonator] shared all the 3D models on his personal site!

Now this is where it starts to get cool. [Will] is using a 4D systems 4.3″ touch display, which doubles as the microprocessor — in fact, he didn’t even have to write a single line of code to program in it! The hardware can be programmed using the free Workshop 4 IDE, which allows him to use a visual editor to program the device. Watching a YouTube video on the Fallout 3 PipBoy, he was able to recreate all the menus with intricate detail to load onto the device. It even has GPIO which allow him to use buttons to navigate the menus (in addition to the touch screen stylus).

Continue reading “Yet Another Awesome Working Prototype Of A PipBoy 3000”

A breakdown of the various parts of the Game Tin

Game Tin: Handheld Games With No Batteries

Anyone who grew up with a Game Boy knows how well they sucked through AA batteries. [Nick]’s Game Tin console solves this problem by running of an ultracapacitor charged by solar power.

The console is based on a EFM32 microcontroller: an ARM device designed for low power applications. The 128×128 pixel monochrome memory display provides low-fi graphics while maintaining low power consumption.

There’s two solar cells and a BQ25570 energy harvesting IC to charge the ultracap. This chip takes care of maximum power point tracking to get the most out of the solar cells. If it’s dark out, the device can be charged in about 30 seconds by connecting USB power.

The 10 F Maxwell ultracapacitor can run a game on the device for 1.5 hours without sunlight, and the device runs indefinitely in the sun. Thanks to the memory display, applications that have lower refresh rates will have much lower power consumption.

The Game Tin is open source, and is being developed using KiCad. You can grab all the EDA files from Bitbucket. [Nick] is also gauging interest in the Game Tin, and hopes to release it as a kit.

The BlueOkiris Gameduino Console

3011851406903369314

[Dylan] created an easy to make gaming console with an Arduino Uno, a makeshift button, an analog stick, and a TFT LCD touchscreen shield. Plus, he fashioned together a simple button with some duct tape.

So far, he has made 2 games. One is the infamous Pong. The other is a ‘Guess the Number’ type experience. The whole project is run within the code, and does not access the bootloader directly like you would with 2boots or a regular Gameduino adapter.

Build instructions can be found on [Dylan]’s hackaday.io project page (linked above). Essentially, all that is needed is to gather up the supplies, then take the button and analog stick and complete a circuit, fitting the open wires into the slots at digital pin 9. Solder the wires in place and connect ground to ground, 5v to 5v, x to A4, and y to A5. Add the TFT shield, insert a micro SD card, and upload a game.

To see it in action, check out the video after the break:

Continue reading “The BlueOkiris Gameduino Console”