Electric LEGO Longboard Now Complete With Epic Road Test

We recently posted about [James Bruton]’s most excellent oversized LEGO electric longboard. Well, now he has completed the project by tidying a few things and building oversized versions of classic light-up bricks to serve as headlamps and the tail light. Most importantly, he’s hitting the road with it!

He built a LEGO-looking enclosure for the battery as well, based on a 2×6 brick. The battery pack sits behind the motor with the tail light on top and holds the radio control receiver as well the twin LiPos. The head and tail lights pack 24-LED discs and are controlled by [James]’ FS-GT2B 3-channel RC transmitter. Its third channel is just a button, and he can trip that button to activate the lights with the help of a Turnigy receiver-controlled switch.

For an added touch he printed some LEGO flowers and a minifig, suitably oversized, and took the skateboard on the road. The thing has some zip! [James] kept his balance while holding the controller in one hand and a selfie stick with the other. The headlamp housings fell off, and a while later the minifig fell off. Fortunately [James] was able to snap them back into place, in proper LEGO fashion.

[James] runs XRobots and also served as a judge for the 2016 Hackaday Prize. We wrote up his Star Wars builds a while back, as well as his tutorial on mixed reality filming without a green screen.

Continue reading “Electric LEGO Longboard Now Complete With Epic Road Test”

Add A Second SD Card To The Pi Zero

The Raspberry Pi Zero is a beautiful piece of hardware, fitting an entire Linux computer into a package the size of a pack of gum (don’t chew it, though). However, this size comes with limited IO options, which can be a complication for some projects. In this case, [Hugatry] wanted extra storage, and devised a smart method to add a second SD card to the Pi Zero.

The problem with the Pi Zero is that with only a single USB port, it’s difficult to add any other storage to the device without making things bulkier with hubs or other work arounds. Additionally, the main SD card can’t be removed while the Pi is running, so it makes sense to add an easy-to-use removable storage option to the Pi Zero.

It’s quite a simple hack – all that’s required to pull it off is a few resistors, an SD card connector, and some jumper wires. With everything hooked up, a small configuration change enables the operating system to recognise the new card.

Overall it’s great to see hacks that add further functionality to an already great platform. If you find it’s not powerful enough, you can always try overclocking one. 

Continue reading “Add A Second SD Card To The Pi Zero”

Bespoke Processors Might Soon Power Your Artisanal Devices

Modern microprocessors are a marvel of technological progress and engineering. At less than a dollar per unit, even the cheapest microprocessors on the market are orders of magnitude more powerful than their ancestors. The first commercially available single-chip processor, the Intel 4004, cost roughly $25 (in today’s dollars) when it was introduced in 1971.

The 4-bit 4004 clocked in at 740 kHz — paltry by today’s standards, but quite impressive at the time. However, what was remarkable about the 4004 was the way it shifted computer design architecture practically overnight. Previously, multiple chips were used for processing and were selected to just meet the needs of the application. Considering the cost of components at the time, it would have been impractical to use more than was needed.

That all changed with the new era ushered in by general purpose processors like the 4004. Suddenly it was more cost-effective to just grab a processor of the shelf than to design and manufacture a custom one – even if that processor was overpowered for the task. That trend has continued (and has been amplified) to this day. Your microwave probably only uses a fraction of its processing power, because using a $0.50 processor is cheaper than designing (and manufacturing) one tailored to the microwave’s actual needs.

Anyone who has ever worked in manufacturing, or who has dealt with manufacturers, knows this comes down to unit cost. Because companies like Texas Instruments makes millions of processors, they’re very inexpensive per unit. Mass production is the primary driving force in affordability. But, what if it didn’t have to be?

Professors [Rakesh Kumar] and [John Sartori], along with their students, are experimenting with bespoke processor designs that aim to cut out the unused portions of modern processors. They’ve found that in many applications, less than half the logic gates of the processor are actually being used. Removing these reduces the size and power consumption of the processor, and therefore the final size and power requirements of the device itself.

Of course, that question of cost comes back into play. Is a smaller and more efficient processor worth it if it ends up costing more? For most manufacturers of devices today, the answer is almost certainly no. There aren’t many times when those factors are more important than cost. But, with modern techniques for printing electronics, they think it might be feasible in the near future. Soon, we might be looking at custom processors that resemble the early days of computer design.

 

Take The Blue Pill And Go Forth

Forth has a long history of being a popular hacker language. It is simple to bootstrap. It is expressive. It can be a very powerful system. [jephthal] took the excellent Mecrisp Forth and put it on the very inexpensive STM32 “blue pill” board to create a development system that cost about $2. You can see the video below.

If you have thirty minutes, you can see just how easy it is to duplicate his feat. The blue pill board has to be programmed once using an STM32 programmer. After that, you can use most standard Forth words and also use some that can manipulate the low-level microcontroller resources.

Continue reading “Take The Blue Pill And Go Forth”

MagSafe Power Bank From Scrap

Just a few short years ago, it was possible to find scrapped lithium batteries for free, or at least for very cheap. What most people at the time didn’t realize is that a battery with multiple cells might go bad because only one cell is bad, leaving the others ready for salvaging. Now it’s not a secret anymore, but if you can manage to get your hands on some there’s a lot of options for use. [ijsf] took a step further with this hack, taking a few cells from a Panasonic battery and wrangling them into a MagSafe-capable power bank for a Mac.

The real hack wasn’t scavenging batteries, however, it was getting the MagSafe to signal the computer to use power from the battery bank to run the computer only, and not to use any of that energy for charging the computer’s internal batteries. This is achieved by disabling the center MagSafe pin, which is the computer’s communication line to the power adapter. After that, the battery bank could be programmed to behave properly (a feat in itself for lithium batteries) and the power bank was successfully put into operation.

Not only was this hack a great guide for how to repurpose cells from a “dead” battery, it’s also an unparalleled quick reference for any work that might need a MagSafe connector. Of course, if you’re going to work with these chargers, make sure that you’re using one that isn’t a cheap clone.

Badgelife image by @catmurd0ck

All The Hardware Badges Of DEF CON 25

Hardware is the future. There is no better proof of this than the hardware clans that have grown up around DEF CON, which in recent years has become known as Badgelife. I was first drawn to the custom hardware badges of the Whiskey Pirates at DC22 back in 2014. Hardware badges were being made by several groups at that time but that was mainly happening in isolation while this year the badge makers are in constant contact with each other.

A slack channel just for those working on their own DEF CON badges sprung up. This served as tech support, social hour, and feature brainstorming for all on the channel. In the past badges were developed without much info getting out during the design process. This year, there was a huge leap forward thanks to a unified badgelife API: the badge makers colluded with each on a unified communcations protocol. In the multitude of images below you frequently see Rigado modules used. These, and some others using different hardware, adopted a unified API for command and control, both through makers’ “god mode” badges, and for wireless gaming between participant badges.

I was able to get into the badge makers meetup on Thursday of DEF CON. What follows is the result of a frantic few hours trying to get through the sheer volume of badges and people to share with you all the custom hardware on display. One thing is for sure — there were literally thousands of custom badges built and sold/distributed during DEF CON. I can’t wait to see what the artisanal hardware industry will look like in five years time.

Continue reading “All The Hardware Badges Of DEF CON 25”

Hackaday Prize Entry: A Six Axis Robotic Arm With Fingertip Control

If you were a child of the 1980s whose fascination extended to the contents of your local Radio Shack store, you may remember the Armatron robot arm as a particular object of desire. It was a table top robot arm operated not by motors or a microcontroller, but by a clever set of gears directed manually from a pair of joysticks. If you took a look at it with an eye to control from your 8-bit home computer you were likely to be disappointed, but nevertheless it was an excellent toy.

The Armatron may be long gone, but if you hanker for a similar device you should take a look at [3D Meister]’s finger controlled six axis arm. This is an arm similar to the Armatron in size, but with far more capabilities. Control is via cable loops to sliders at the arm’s base, and in addition to the usual arm movements there is an extra loop which can be used to operate any of a selection of tools including a gripper, a magnet, and a clipper. The video below the break shows the arm in action, and for the faint-hearted it should be noted that it contains the gratuitous death of some innocent plants.

Continue reading “Hackaday Prize Entry: A Six Axis Robotic Arm With Fingertip Control”