Who’s Afraid Of Assembly Language?

This week, [Al Williams] wrote a great thought piece about whether or not it was worth learning an assembly language at all anymore, and when. The comments overflowed, and we’re surprised that so many people basically agree with us: yes. Of course, it’s a Hackaday crowd, but I still didn’t expect the outpouring of love for the most primitive of languages.

Assembly language isn’t really one language, though. Every chip speaks its own dialect. Of course there are similarities: every CPU has an add function, right? But almost no CPU has just one add – there are variants with and without carry, storing and reading from working registers or RAM. And once you start talking about memory access, direct or indirect, the individual architectures of the chips demand different assembly languages.

But still, although the particular ways that CPUs do what they do can be incompatible from a strictly language perspective, they are a lot more similar in terms of the programming idioms that you’ll pick up along the way. Just as learning a set of solid algorithms will help you no matter which higher-level language you use, learning the concepts behind crafting loops and simple memory structures out of raw assembly language will serve you no matter which CPU you choose.

I have only written assembly language for a handful of CPUs, and not much of it at that, but I’ve found the microcontrollers to be the friendliest. So if you want to dip your toes in that water, pick up an AVR or an MSP430. Or maybe even the new hotness – a RISC-V. You’ll find the instruction sets small enough that you have to do most of the work yourself. And that is, after all, the point of learning an assembly language: learning to think like the silicon. If you treat it like a fun puzzle to solve, you’ll probably even enjoy the experience.

[Al]’s original question was when you should learn an assembly language: before or after a higher-level language. For 99% of our readers, I’d say the answer is right now.

That Ultra-White Paint That Helps Cool Surfaces? Make Your Own!

It started with [KB9ENS] looking into paints or coatings for passive or radiative cooling, and in the process he decided to DIY his own. Not only is it perfectly accessible to a home experimenter, his initial results look like they have some promise, as well.

[KB9ENS] read about a type of ultra-white paint formulation that not only reflects heat, but is able to radiate it into space, cooling the painted surface to below ambient temperature. This is intriguing because while commercial paints can insulate and reflect heat, they cannot make a surface cooler than its surroundings.

Anecdotally speaking, this painted battery section of a solar recharger gets too hot to touch in full sunlight. But when painted over, it was merely warm.

What really got [KB9ENS] thinking was that at its core, the passively-cooling paint in the research is essentially a whole lot of different particle sizes of barium sulfate (BaSO₄) mixed into an acrylic binder. These two ingredients are remarkably accessible. A half-pound of BaSO₄ from a pottery supply shop was only a few dollars, and a plain acrylic base is easily obtained from almost any paint or art supplier.

[KB9ENS] decided to mix up a crude batch of BaSO₄ paint, apply it to some things, and see how well it compared to other paints and coatings. He wetted the BaSO₄ with some isopropyl alcohol to help it mix into the base, and made a few different concentrations. A 60% concentration by volume seemed to give the best overall results.

There’s no indication of whether any lower-than-ambient cooling is happening, but according to a non-contact thermometer even this homemade mixture does a better job of keeping sunlight from heating things up compared to similarly-applied commercial paints (although it fared only slightly better than titanium dioxide-based white paint in the initial test.)

[KB9ENS] also painted the battery section of a solar recharger with his homemade paint and noted that while under normal circumstances — that is to say, in full sunlight — that section becomes too hot to touch, with the paint coating it was merely warm.

Actual passive cooling can do more than just keep something less warm than it would be otherwise. We’ve seen it recently used to passively and continuously generate power thanks to its ability to create a constant temperature differential, day and night.

Behold A Gallery Of Sony’s PS VR2 Prototypes

Every finished product stands at the end of a long line of prototypes, and Sony have recently shared an interview and images of their PlayStation VR2 prototypes.

Many of the prototypes focus on a specific functionality, and readers who are not familiar with building things might find it a bit wild to see just how big and ungainly un-optimized hardware can be.

Finished product (bottom) contrasted with functionally-identical prototype (top).

The images are definitely the best part of that link, but the interview has a few interesting bits. For example, one prototype was optimized for evaluating and testing camera placement with a high degree of accuracy, and it hardly looks like a VR headset at all.

The controllers on the other hand seem to have gone though more iterations based on the ergonomics and physical layout of controls. The VR2 controllers integrate the adaptive triggers from the PlayStation 5, which are of a genuinely clever design capable of variable resistance as well as an active force feedback effect that’s not quite like anything that’s come before.

There’s a lot of work that goes into developing something like a VR headset, as we see here and we’ve seen with Facebook’s (now Meta) VR research prototypes. But even when one can leverage pre-made modules as much as possible and doesn’t need to start entirely from scratch, making a VR headset remains a whole heap of work.

AI Learns To Walk In 3D Training Grounds

AI agents are learning to do all kinds of interesting jobs, even the creative ones that we quite prefer handling ourselves. Nevertheless, technology marches on. Working in this area is YouTuber [AI Warehouse], who has been teaching an AI to walk in a simulated environment.

Albert needed some specific guidance to learn how to walk upright, something that humans tend to figure out innately.

The AI controls a vaguely humanoid-like creature, albeit with a heavily-simplified body and limbs. It “lives” in a 3D environment created in the Unity engine, which provides the necessary physics engine for the work. Meanwhile, the ML-Agents package is used to provide the brain for Albert, the AI charged with learning to walk.

The video steps through a variety of “deep reinforcement learning” tasks. In these, the AI is rewarded for completing goals which are designed to teach it how to walk. Albert is given control of his limbs, and simply charged with reaching a button some distance away on the floor. After many trials, he learns to do the worm, and achieves his goal.

Getting Albert to walk upright took altogether more training. Lumpy ground and walls in between him and his goal were used to up the challenge, as well as encouragements to alternate his use of each foot and to maintain an upright attitude. Over time, he was able to progress through skipping and to something approximating a proper walk cycle.

One may argue that the teaching method required a lot of specific guidance, but it’s still a neat feat to achieve nonetheless. It’s altogether more complex than learning to play Trackmania, we’d say, and that was impressive enough in itself. Video after the break.

Continue reading “AI Learns To Walk In 3D Training Grounds”

2600 Breaks Free From DRM With PDF/EPUB Subscription

Hackaday has been online in some form or another since 2004, which for the Internet, makes us pretty damn old. But while that makes us one of the oldest surviving web resources for hacker types, we’ve got nothing on 2600 — they’ve been publishing their quarterly zine since 1984.

Summer 2023 Issue of 2600

While the physical magazine can still be found on store shelves, the iconic publication expanded into digital distribution some time ago, thanks largely to the Kindle’s Newsstand service. Unfortunately, that meant Amazon’s recent decision to shutter Newsstand threatened to deprive 2600 of a sizable chunk of their income. So what would any group of hackers do? They took matters into their own hands and spun-up their own digital distribution system.

As of today you’re able to subscribe to the digital version of 2600 in DRM-free PDF or EPUB formats, directly from the magazine’s official website. Which one you pick largely depends on how you want to read it: those looking for the highest fidelity experience should go with PDF, as it features an identical layout to the physical magazine, while those who are more concerned with how the content looks on their reader of choice would perhaps be better served by the flexibility of EPUB. After signing up you can download the current Summer issue immediately, with future issues hitting your inbox automatically. Load it onto your home-built Open Book, and you can really stick it to the establishment.

While the ending of this story seems to be a happy one, we can’t help but see it as a cautionary tale. How many other magazines would have the means and experience to offer up their own digital subscriptions? Or for that matter, how many could boast readers savvy enough to utilize it? The reality is many publications will be injured by Amazon’s decision, some mortally so. That’s a lot of power to be put into the hands of just one company, no matter how quick the shipping is.

Game Boy-Style Camera For Playdate

The Game Boy Camera, while perhaps not the most technologically advanced piece of equipment, left a huge mark on video game and electronics culture. The grayscale photographs are still highly prized, and there are an untold number of projects which interface with original hardware to download authentic Game Boy Camera pictures to modern computers. There are others that look to recreate the feel and style of these images, and the latest comes to us on a Game Boy-like platform as well, the Playdate.

[t0mg] is the creator of this project, utilizing a OV7670 camera module sending data to a Teensy 4.1 which interfaces with the Playdate via USB. The images recorded on the Playdate are 1-bit, slightly different than the 2-bit images the Game Boy Camera was capable of. The case of the camera also physically matches up well with the small console, using magnets to secure it to the device either in normal camera mode, in reverse for selfie mode, and can also support the console in “cover” mode as a way of storing the console to protect the screen. A companion application needs to run on the Playdate to get this all up and running, but with that and a battery plenty of retro-style images are ready to be captured.

All of the source for this project is available on the project’s GitHub page for anyone ready to experience some nostalgia or just experiment with a small camera like this. It’s a clean build that takes advantage of the Playdate’s open-source nature, through which we’ve seen the console turned into a typewriter and inspire other builds like this one-off handheld with a crank-style controller.

Continue reading “Game Boy-Style Camera For Playdate”

TV Typewriter Remembered

With the recent passing of Don Lancaster, I took a minute to reflect on how far things have come in a pretty short period of time. If you somehow acquired a computer in the early 1970s, it was probably some discarded DEC, HP, or Data General machine. A few people built their own, but that was a stout project with no microprocessor chips readily available. When machines like the Mark-8 and, more famously, the Altair appeared, the number of people with a “home computer” swelled — relatively speaking — and it left a major problem: What kind of input/output device could you use?

An ad from Kilobaud offered you a ready-to-go, surely refurbished, ASR33 for $840

At work, you might have TeleType. Most of those were leased, and the price tag of a new one was somewhere around $1,000. Remember, too, that $1,000 in 1975 was a small fortune. Really lucky people had video terminals, but those were often well over $1,500, although Lear Siegler introduced one at the $1,000 price, and it became wildly successful. Snagging a used terminal was not very likely, and surplus TeleType equipment was likely of the 5-bit Baudot variety — not unusable, but not the terminal you really wanted.

A lot of the cost of a video terminal was the screen. Yet nearly everyone had a TV, and used TVs have always been fairly cheap, too. That’s where Don Lancaster came in. His TV Typewriter Cookbook was the bible for homebrew video displays. The design influenced the Apple 1 computer and spawned a successful kit for a company known as Southwest Technical Products. For around $300 or so, you could have a terminal that uses your TV for output. Continue reading “TV Typewriter Remembered”