Open Source Ear Monitoring Platform Listens To Your Ears

All sorts of exciting things happen in your ears, and now there is a good open source way to monitor them. Open Earable is a new project from a group of researchers and companies that monitors and records what is going on in your ear.

The project is designed as an easy-to-build, cheap way for audiologists and others to capture data about what is happening inside and around the ear. It’s a clip-on device that looks like a small hearing aid but has a six-degree Inertial Measurement Unit (IMU) and several other sensors to measure things around your ear and inside the ear canal. A pressure and temperature sensor measures the air pressure and temperature just inside the ear canal, and a small speaker can squirt sound right in there.

A button on the outside allows the user to control the device, and it can play back or record sound to the internal SD card memory. These are all controlled by an Arduino that includes Bluetooth Low Energy. The existing design only allows you to play a stored WAV file, not streaming audio. That’s a solvable problem, though, so it could also be turned into a set of hacker headphones.

Joking aside, this looks like an exciting research project and a useful tool for researchers. The GitHub repository for version 1.3 of the project lays it all out, including a full BoM and code, and the STL files for the case and PCB designs are in the Resources section of the site.

[Updated 18/10/2023 to correct IMU to Measurement, not Management. Intertial management needs a different set of devices]

Full Self-Driving, On A Budget

Self-driving is currently the Holy Grail in the automotive world, with a number of companies racing to build general-purpose autonomous vehicles that can get from point A to point B with no user input. While no one has brought one to market yet, at least one has promised this feature and had customers pay for it, but continually moved the goalposts for delivery due to how challenging this problem turns out to be. But it doesn’t need to be that hard or expensive to solve, at least in some situations.

The situation in question is driving on a single stretch of highway, and only focuses on steering, so it doesn’t handle the accelerator or brake pedal input. The highway is driven normally, using a webcam to take images of the route and an Arduino to capture data about the steering angle. The idea here is that with enough training the Arduino could eventually steer the car. But first some math needs to happen on the training data since the steering wheel is almost always not turning the car, so the Arduino knows that actual steering events aren’t just statistical anomalies. After the training, the system does a surprisingly good job at “driving” based on this data, and does it on a budget not much larger than laptop, microcontroller, and webcam.

Admittedly, this project was a proof-of-concept to investigate machine learning, neural networks, and other statistical algorithms used in these sorts of systems, and doesn’t actually drive any cars on any roadways. Even the creator says he wouldn’t trust it himself, but that he was pleasantly surprised by the results of such a simple system. It could also be expanded out to handle brake and accelerator pedals with separate neural networks as well. It’s not our first budget-friendly self-driving system, either. This one makes it happen with the enormous computing resources of a single Android smartphone.

Continue reading “Full Self-Driving, On A Budget”

The Pros And Cons Of Hydrofoils

Hydrofoils have fascinated naval architects and marine designers for years. Fitted with underwater wings, these designs traverse the waters at great speed with a minimum of drag. As with many innovative technologies, though, the use of hydrofoils is riddled with challenges that often offset the vast benefits they offer.

While hydrofoils promise a better marine transportation experience, their adoption hasn’t been smooth sailing. In this article, we’ll dive deep into the potential and pitfalls of hydrofoil designs, and look at the unique niches this technology serves today.

Continue reading “The Pros And Cons Of Hydrofoils”

The Clock, Another Way To Modify The Sound Of A Synth Chip

The Philips SAA1099 is perhaps one of the lesser-known among the crop of 1980s-era 8-bit sound generator chips, but with three stereo voices onboard it makes a capable instrument for chiptune experimentation. It’s attracted the attention of [Folkert van Heusden], who’s tried the novel experiment of seeing what happens when a sound chip’s clock is varied.

A quick search of the internet reveals that the chip, which appeared in early Sound Blaster cards, is intended to have an 8 MHz clock. He’s hooked it up to an Arduino as a variable clock source, which surprised us but it seems an ATmega328’s timer is faster than we expected.

There are a couple of WAV files, and as expected the clock frequency has a significant effect on the pitch. The samples just sweep up and down without much attempt at making a sound you’d want to hear, but it does raise an interesting possibility of adding a further pitch bending ability to the capabilities already in the chip. When these circuits were new we couldn’t control a clock on a whim with the 8-bit processors of the day, so of course none of us thought to try this at the time. He’s tried it, so you don’t have to.

The SAA1099 has been mentioned in these pages only once, as a chip used in peripherals for 1980s Czech computers.

Solar Camera Built From Raspberry Pi

Ever since an impromptu build completed during a two-week COVID-19 quarantine back in 2020, [Will Whang] has been steadily improving his Raspberry Pi solar photography setup. It integrates a lot of cool stuff: multiple sensors, high bandwidth storage, and some serious hardware. This is no junk drawer build either, the current version uses a $2000 USD solar telescope (an LS60M with 200mm lens) and a commercial AZ-GTi mount.

He also moved up somewhat with the imaging devices from the Raspberry Pi camera module he started with to two imaging sensors of his own: the OneInchEye and the StarlightEye, both fully open source. These two sensors feed data into the Raspberry Pi 4 Compute Module, which dumps the raw images into storage.

Because solar imaging is all about capturing a larger number of images, and then processing and picking the sharpest ones, you need speed. Far more than writing to an SD Card. So, the solution [Will] came up with was to build a rather complex system that uses a CF Express to NVME adapter that can keep up, but can be quickly swapped out.

Unfortunately, all of this hard work proved to be in vain when the eclipse came, and it was cloudy in [Wills] area. But there is always another interesting solar event around the corner, and it isn’t going anywhere for a few million years. [Will] is already looking at how to upgrade the system again with the new possibilities the Raspberry Pi 5 offers.

Continue reading “Solar Camera Built From Raspberry Pi”

A Look At A 1960s Tube-Based Magnavox Concert Grand Console Stereo

Back in presumably the early 1960s, [David]’s grandfather bought a console stereo featuring a record player, AM/FM radio and a rather astounding stereo speaker system that would be more than enough to cover a small concert hall. Having inherited this piece of auditory art after his grandfather’s passing, [David] has given the console stereo a prominent place in his living room, which is where we start the tour in a new video on the [Usagi Electric] YouTube channel.

Plentiful I/O on this 1960s vintage piece of Magnavox audio equipment.

Being a 1950s-vintage design that got produced into the 1960s in a variety of models, the Magnavox Concert Grand is an all-tube affair, with the only presence of semiconductors being the three transistors found in the ‘Phantom’ remote control. [David] unfortunately does not posses this remote control, although the receiver module is present in the unit. It appears to be similar to the 1960 1ST800F in possession by [electra225] over at the Classic HiFi Care forum, which can provide 50 Watt per channel, yet as noted in the forum post, the 44 tubes alone draw about 250 Watt, with [electra225] recording 377 Watt total with everything cranked up. Clearly a high power bill was a price one had to pay for having high-end audio back in that era.

After [David] takes his unit apart – made very easy due to the modular construction – he goes through the basic circuitry of the power supply, the amplifiers and even has a peek at the circuitry of the remote control which appears to use basic frequency modulation to transfer the intended action to the receiver. All of this is made quite easy as full schematics are available for the entire system, as was standard back in those days. Interesting is also the I/O module, which features an MPX section, for demodulating stereo FM which wasn’t standardized yet at the time. Finally, tape drive connectors are available, which would have been likely a reel-to-reel unit for maximum HiFi enjoyment.

With the only broken thing in [David]’s unit being the snapped wire on the tuner of the radio module (ironically caused by the disassembly), all that was changed before reassembly was a good clean, after which the console stereo was put back and tested. Reflecting an era when HiFi equipment was supposed to blend in with other furniture, it will likely continue to do service for [David] as the world’s fanciest TV soundbar for the foreseeable future.

Continue reading “A Look At A 1960s Tube-Based Magnavox Concert Grand Console Stereo”

Vintage Computer Festival Southern California

The Vintage Computer Festival is coming to sunny Southern California in February 2024. That’s right, bring your Commodores, your Tandys,  your PDP-11s, and Altairs. The world of retrocomputing will be open to vendors, visitors, and exhibitors at The Hotel Fera Events Center in Orange, California on February 17th and 18th, 2024.

If you’re thinking there already is a VCF out west, you’d be right. VCF West was held in August at the Computer History Museum. The CHM is in Mountain View, California. That puts it nearly at the epicenter of the microcomputer revolution of the ’70s and ’80s.

Southern California still had plenty of computer enthusiasts though. For the non-geographically inclined amongst us, SoCal is nearly 6 hours from Mountain View by car.  We’re sure we’ll see many familiar faces at SoCal, along with plenty of new ones.

The Vintage Computer Federation holds several events across the country each year. You might have heard some music from VCF Midwest 2023 back in September. Hackaday was also out in force at VCF East this year, where our own [Bil Herd] moderated a panel of vintage computer YouTubers including [Usagi Electric], [Adrian’s Digital Basement], and [FranLab].