2024 Business Card Challenge: Adding Some Refinement To Breadboard Power Supplies

For small electronics projects, prototyping a design on a breadboard is a must to iron out kinks in the design and ensure everything works properly before a final version is created. The power supply for the breadboard is often overlooked, with newcomers to electronics sometimes using a 9V battery and regulator or a cheap USB supply to get a quick 5V source. We might eventually move on to hacking together an ATX power supply, or the more affluent among us might spring for a variable, regulated bench supply, but this power supply built specifically for breadboards might thread the needle for this use case much better than other options.

The unique supply is hosted on a small PCB with two breakout rails that connect directly to the positive and negative pins on a standard-sized breadboard. The power supply has two outputs, each of which can output up to 24V DC and both are adjustable by potentiometers. To maintain high efficiency and lower component sizes, a switch-mode design is used to provide variable DC voltage. A three-digit, seven-segment display at the top of the board keeps track of whichever output the user selects, and the supply itself can be powered by a number of inputs, including USB-C or lithium batteries.

Continue reading “2024 Business Card Challenge: Adding Some Refinement To Breadboard Power Supplies”

Homebrew Computer From The Ground Up

Building a retro computer of some sort is a rite of passage for many of us, with some building replicas or restorations of old Commodores, Ataris, and other machines from decades past. Others go even further back, to the time of the Intel 8008 or earlier, and a dedicated few will build something completely novel. This project from [3DSage] falls squarely in the latter category, with his completely DIY computer built component by component from scratch, including the machine code needed to run it.

[3DSage] starts with the backbone of every computer: the clock. He first demonstrates how a pair of NOT gates with a set of capacitors can be used as a rudimentary clock pulse, then builds a more refined version with a 555 timer and potentiometer for adjustable rates. Then, it’s on to creating a binary counter, which is a fundamental part of the memory system for this small computer, and finally, allows this circuitry to behave like a normal computer. Using a set of switches to store values in memory and stepping through them with the clock, the computer can be programmed to do plenty of tasks just like a modern microcontroller.

[3DSage] built this project a few years ago and has used it for real-world applications such as controlling servos, LED arrays, playing music, and other tasks. Although he has to program it using his own machine code by hand, it’s a usable computer in many ways. If you want to eschew modernity and build a retro computer in the style of the 1960s, though, this piece goes through what it would have been like to build a similar system in the era when these computers were more common. If you have a switch fetish, you might like to see how real computers worked back then, too.

Continue reading “Homebrew Computer From The Ground Up”

The Secret Behind The Motion Of Microsoft’s Bendy Mouse

The Surface Arc is a designed-for-travel mouse that carries flat, but curves into shape for use. It even turns on when it’s bent and shuts itself off when it’s flat. The device isn’t particularly new, but [Mr Teardown] was a bit surprised at the lack of details about what’s inside so tears it down in a video to reveal just how the mechanism works.

The mechanism somewhat resembles a beaver’s tail, and locks into place thanks to a magnetic connector at the base that holds the device’s shape.

The snap-action of the bending is accomplished with the help of a magnetic connection near the bottom end of the mouse’s “tail”, locking it into place when flexed. Interestingly, the on and off functionality does not involve magnets at all. Power control is accomplished by a little tab that physically actuates a microswitch.

There are a few interesting design bits that we weren’t expecting. For example, there is no mechanical scroll wheel. The mouse delivers similar functionality with touch sensors and a haptic feedback motor to simulate the feel and operation of a mechanical scroll wheel.

[Mr Teardown] finds the design elegant and effective, but we can’t help but notice it also seems perhaps not as optimized as it could be. There are over 70 components in all, including 23 screws (eight different kinds!), and it took [Mr Teardown] the better part of 45 minutes to re-assemble it. You can watch the entire teardown in the video embedded just under the page break; it’s a neat piece of hardware for sure.

If you’re in the mood for another mouse teardown, we have a treat for you: an ancient optical mouse from the 80s that required a special surface to work.

[via Core77]

Continue reading “The Secret Behind The Motion Of Microsoft’s Bendy Mouse”

One Man’s Trash Is… A Rare $60,000 Historical Computer

According to Smithsonian Magazine, a salvage company in London was cleaning out a property and found an odd-looking computer device. No one knew what it was, and they couldn’t find anything with a quick online search. The devices in question were two ultra-rare Q1 computers dating from the early 1970s.

While these machines looked formidable, they contained Intel 8008 CPUs but did have built-in screens, keyboards, and printers. The two machines had a few minutes of fame at Kingston University London and are now for sale. They will probably bring about $60,000 each. Not bad for salvage junk.

Continue reading “One Man’s Trash Is… A Rare $60,000 Historical Computer”

Germany’s Solar Expansion And The Negative Effects Of Electricity Overproduction

Amidst the push for more low-carbon energy, we see the demolishing of one of the pillars of electric grids: that of a careful balancing between supply and demand. This is not just a short-term affair. It also affects the construction of new power plants, investments in transmission capacity, and so on. The problem with having too much capacity is that it effectively destroys the electricity market, as suppliers need to make a profit to sustain and build generators and invest in transmission capacity. This is now the problem that Germany finds itself struggling with due to an overcapacity of variable renewable power sources (VRE) like solar and wind.

With a glut of overcapacity during windy and sunny days, this leads to prices going to zero or even negative. While this may sound positive (pun intended), it means that producers are not being paid. Worse, it means that when, for example, France buys German wind power for negative Euros via the European Electricity Exchange (EEX), it means that Germany actually pays France, instead of vice versa. The highly variable output of wind and solar also means a big increase in curtailment and redispatch measures to keep the grid stable, all of which costs money and drives up operating costs.

Continue reading “Germany’s Solar Expansion And The Negative Effects Of Electricity Overproduction”

How A DOS Format Blunder Revealed Some Priceless Source Code

As those of us who worked in the consumer software world back when physical media was king can attest, when a master disc has been sent for duplication and distribution there is no turning back from whatever code is in the hands of thousands of users. Usually such worries were confined to bugs or inadvertently sending out pre-release software versions, but [Lance Ewing] is here with the story of how Sierra On-Line once inadvertently released most of the source code for their game engine.

If you have some 720k floppy disk versions of the 1988 game Space Quest II, the first disk in the set appears to have nothing out of the ordinary, but a closer look reveals that the free space on the disk reported by DOS is greater than its used space. Diving in to the disk block contents with a hex editor reveals that many of the unused blocks in fact contain C code, and some further detective work allows the recovery of a not-quite complete set of source files for the company’s AGI, or adventure game interpreter. They had been left behind when the original master disk had been emptied by deleting them, rather than by formatting it afresh.

In commercial terms this would in 1988 have been something of a disaster for Sierra had it been discovered at the time, because it was the cornerstone of their success. As it was we’re told the code sat peacefully undetected until 2016, since when it has proved invaluable to those interested in computer game archaeology. Or did it? We’ll never know if a sharp-eyed competitor snagged it, and kept quiet.

Of course, these days, there are game engines that are open source. Some of them are very modern. Others… not so much.

A Look At 3D Printed Shoes: Hybrid, Fully Printed And Plain Weird

In the eternal quest to find more things to do with 3D printers, shoes have been in the spotlight for a while now. But how practical is additive manufacturing in this field really?

Adidas Ultra 4D running shoes with 3D printed midsole.
Adidas Ultra 4D running shoes with 3D printed midsole.

This is where [Joel Telling] of the 3D Printing Nerd YouTube channel puts in his two cents, with a look at a range of commercial and hobbyist ideas and products. Naturally, the first thing that likely comes to mind at the words ‘3D printed shoes’ is something akin to the plastic version of wooden clogs, or a more plastic-y version of the closed-cell resin of Crocs.

First on the list are the white & spiky Kaiju Gojira shoes from Fused Footwear, printed from TPE filament to order. TPE is softer to the touch and more flexible than TPU, but less durable. In contrast the Adidas Ultra 4D running shoes (from their 4D range) are a hybrid solution, with a standard rubber outsole, 3D printed midsole with complex structures and mostly fabric top part. Effectively a Nike Air in initial impression, perhaps.

Meanwhile ‘3D printed’ shoes ordered off Chinese store Shein turned out to be not 3D printed at all, while [Joel] seems to be really into fully 3D printed shoes from Zellerfeld, who appear to be using TPU. While it’s hard to argue about taste, the Adidas shoes might appeal to most people. Especially since they’d likely let your feet breathe much better, a fact appreciated not only by yourself, but also family members, roommates and significant others. So which of these (partially) 3D printed shoes would you pick, or do you have some other favorite?

Continue reading “A Look At 3D Printed Shoes: Hybrid, Fully Printed And Plain Weird”