Hackaday Celebrates 15 Years And Oh How The Hardware Has Changed

Today marks exactly 15 years since Hackaday began featuring one Hack a Day, and we’ve haven’t missed a day since. Over 5,477 days we’ve published 34,057 articles, and the Hackaday community has logged 903,114 comments. It’s an amazing body of work from our writers and editors, a humbling level of involvement from our readers, and an absolutely incredible contribution to open hardware by the project creators who have shared details of their work and given us all something to talk about and to strive for.

What began as a blog is now a global virtual hackerspace. That first 105-word article has grown far beyond project features to include spectacular long-form original content. From our community of readers has grown Hackaday.io, launched in 2014 you’ll now find over 30,000 projects published by 350,000 members. The same year the Hackaday Prize was founded as a global engineering initiative seeking to promote open hardware, offering big prizes for big ideas (and the willingness to share them). Our virtual connections were also given the chance to come alive through the Hackaday Superconference, Hackaday Belgrade, numerous Hackaday Unconferences, and meetups all over the world.

All of this melts together into a huge support structure for anyone who wants to float an interesting idea with a proof of concept where “why” is the wrong question. Together we challenge the limits of what things are meant to do, and collectively we filter through the best ideas and hold them high as building blocks for the next iteration. The Hackaday community is the common link in the collective brain, a validation point for perpetuating great ideas of old, and cataloging the ones of new.

Perhaps the most impressive thing about the last 15 years of Hackaday is how much the technological landscape has changed. Hackaday is still around because all of us have actively changed along with it — always looking for that cutting edge where the clever misuse of something becomes the base for the next transformative change. So we thought we’d take a look back 15 years in tech. Let’s dig into a time when there were no modules for electronics, you couldn’t just whip up a plastic part in an afternoon, designing your own silicon was unheard of, and your parts distributor was the horde of broken electronics in your back room.

Continue reading “Hackaday Celebrates 15 Years And Oh How The Hardware Has Changed”

Joining The RISC-V Ranks: IBM’s Power ISA To Become Free

IBM’s Power processor architecture is probably best known today as those humongous chips that power everything from massive mainframes and supercomputers to slightly less massive mainframes and servers. Originally developed in the 1980s, Power CPUs have been a reliable presence in the market for decades, forming the backbone of systems like IBM’s RS/6000 and AS/400 and later line of Power series.

Now IBM is making the Power ISA free to use after first opening up access to the ISA with the OpenPower Foundation. Amidst the fully free and open RISC-V ISA making headway into the computing market, and ARM feeling pressured to loosen up its licensing, it seems they figured that it’s best to join the party early. Without much of a threat to its existing business customers who are unlikely to whip up their own Power CPUs in a back office and not get IBM’s support that’s part of the business deal, it seems mostly aimed at increasing Power’s and with it IBM’s foothold in the overall market.

The Power ISA started out as the POWER ISA, before it evolved into the PowerPC ISA, co-developed with Motorola  and Apple and made famous by Apple’s use of the G3 through G5 series of PowerPC CPUs. The PowerPC ISA eventually got turned into today’s Power ISA. As a result it shares many commonalities with both POWER and PowerPC, being its de facto successor.

In addition, IBM is also opening its OpenCAPI accelerator and OpenCAPI Memory Interface variant that will be part of the upcoming Power9′ CPU. These technologies are aimed at reducing the number of interconnections required to link CPUs together, ranging from NVLink, to Infinity Fabric and countless more, not to mention memory, where OMI memory could offer interesting possibilities.

Would you use Power in your projects? Let us know in the comments.

Perfecting A Bluetooth N64 Controller

Love it or hate it, the Nintendo 64 controller doesn’t seem to be going anywhere. Dedicated fans are still looking for ways to use the unique trilobed controller with modern systems, and they won’t be satisfied until they perfectly replicate the original experience. [Shyri Villar] has been working on perfecting a blend of original and modern hardware that looks very promising.

The project started when [Shyri] found that you could take the internals from a modern third party Bluetooth N64 controller made by 8BitDo and put them into the original controller’s case. This would give you the original buttons back, and overall a more authentic weight and feel. Unfortunately, this usually means dumping the original N64 joystick for the 8BitDo’s.

What [Shyri] wanted to do was install the 8BitDo PCB into an original N64 controller, but adapt Nintendo’s joystick to communicate with it. Unfortunately, since the original joystick used optical encoders and the 8BitDo version uses potentiometers, there’s something of a language gap.

To bridge the divide, both the X and Y dimensions of the joystick get their own PIC12F675 microcontroller and X9C103S digital potentiometer. The microcontrollers read the X and Y values from the original joystick’s encoders, and use the digital potentiometers to provide the 8BitDo with the expected analog input. Right now the electronics are held on two scraps of perfboard tucked into the side “wings” of the controller, but hopefully we’ll see a custom PCB in the future.

If you’re more interested in going back in time with your trusty N64 controller, then you might be interested in learning more about how one hacker managed to hook it up to the MSX.

Hands-On: Queercon 16 Hardware Badge Shows Off Custom Membrane Keyboard

Year over year, the Queercon badge is consistently impressive. I think what’s most impressive about these badges is that they seemingly throw out all design ideas from the previous year and start anew, yet manage to discover a unique and addictive aesthetic every single time.

This year, there are two hardware badges produced by the team composed of Evan Mackay, George Louthan, Tara Scape, and Subterfuge. The one shown here is nicknamed the “Q” badge for its resemblance to the letter. Both get you into the conference, both are electronically interactive, but this one is like a control panel for an alternate reality game (ARG) that encourages interactivity and meaningful conversations. The other badge is the “C” badge. It’s more passive, yet acts as a key in the ARG — you cannot progress by interacting with only one type of badge, you must work with people sporting both badge types so that Queercon attendees who didn’t purchase the Q badge still get in on the fun.

The most striking feature on this badge is a custom membrane keyboard tailored to playing the interactive game across all badges at the conference. But I find that the eInk screen, RJ12 jack for connectivity, and the LED and bezel arrangements all came together for a perfect balance of function and art. Join me after the break for a closer look at what makes this hardware so special.

Continue reading “Hands-On: Queercon 16 Hardware Badge Shows Off Custom Membrane Keyboard”

Fire Breathing N64 Puts Blast Processing In The Shade

Consoles over the years have innovated, bringing new features and experiences with each subsequent generation. Rumble, motion controls and more recently VR have all come to the fore as companies vie for supremacy in the marketplace. Nobody’s really had the guts to tackle fire, though. Until now.

The case and spinning logo alone would have made the front page; the fire is simply next level. Our parents were always telling us to sit further from the TV… and now we know why.

The build is based on the Nintendo 64. The motherboard is removed from the original case, and fitted to a sheet metal enclosure of impressive craftsmanship. This allows the fitment of the machine’s party piece — twin jets of flame, triggered by an extra button on the controller. There’s also a spinning N64 logo built into the front of the case, backlit in a foreboding red — hinting to the player that this is no regular console.

The console is capable of shooting flames up to 4 feet long, and if you have to ask why, you’re likely on the wrong website. We’d love to see the jets triggered by rumble, ideally on a per player basis — making bouts of Mario Kart and Smash Brothers more perilous than ever.

As it turns out, fire’s also a great way to visualise sound waves. Video after the break.

Continue reading “Fire Breathing N64 Puts Blast Processing In The Shade”

Home Automation At A Glance Using AI Glasses

There was a time when you had to get up from the couch to change the channel on your TV. But then came the remote control, which saved us from having to move our legs. Later still we got electronic assistants from the likes of Amazon and Google which allowed us to command our home electronics with nothing more than our voice, so now we don’t even have to pick up the remote. Ushering in the next era of consumer gelification, [Nick Bild] has created ShAIdes: a pair of AI-enabled glasses that allow you to control devices by looking at them.

Of course on a more serious note, vision-based home automation could be a hugely beneficial assistive technology for those with limited mobility. By simply looking at the device you want to control and waving in its direction, the system knows which appliance to activate. In the video after the break, you can see [Nick] control lamps and his speakers with such ease that it almost looks like magic; a defining trait of any sufficiently advanced technology.

So how does it work? A Raspberry Pi camera module mounted to a pair of sunglasses captures video which is sent down to a NVIDIA Jetson Nano. Here, two separate image classification Convolutional Neural Network (CNN) models are being used to identify objects which can be controlled in the background, and hand gestures in the foreground. When there’s a match for both, the system can fire off the appropriate signal to turn the device on or off. Between the Nano, the camera, and the battery pack to make it all mobile, [Nick] says the hardware cost about $150 to put together.

But really, the hardware is only one small piece of the puzzle in a project like this. Which is why we’re happy to see [Nick] go into such detail about how the software functions, and crucially, how he trained the system. Just the gesture recognition subroutine alone went through nearly 20K images so it could reliably detect an arm extended into the frame.

If controlling your home with a glance and wave isn’t quite mystical enough, you could always add an infrared wand to the mix for that authentic Harry Potter experience.

Continue reading “Home Automation At A Glance Using AI Glasses”

Keezer Controller Keeps The Kegs Pouring

It’s always a good idea to keep a few brews in the fridge ready to go, but being able to offer your guests a fresh-poured draught beer is another step above. It’s not trivial, but with a few kegs, a freezer and the right CO2 parts, it’s achievable for the average hacker. [Ben Brooks] had a keezer (keg freezer) setup that had been doing the job quite well, but wanted to take things up a notch.

Wishing to know when it was time to start brewing more beer, [Ben] needed a way to measure how much was left in the individual kegs. Opting to weigh them, initial experiments with a hand-made capacitive sensor failed when moisture in the freezer began to ruin the sensor’s performance. Switching to a strain-gauge based setup enabled more accurate readings to be taken with no drift over time. Solenoids were added to enable the taps to be shutdown outside of beer o’clock, and a Particle Photon and Raspberry Pi were put to work to give the whole project a slick web interface. There’s even a monitor to show guests what’s on tap!

It’s a tidy improvement to a home keg setup, and ensures [Ben]’s guests won’t be left thirsty in the middle of a party. We’ve seen other instrumented beer rigs before, too. If you’re working on your own homebrewing masterpiece, be sure to drop us a line.