Tetris For Game Boy Gets Online Multiplayer

Released in 1989, the Game Boy version of Tetris is notable for being the first game to support multiplayer via the so-called “Game Link Cable” accessory. So it’s fitting that, 32 years later, that same game is now playable with others over the Internet thanks to an open source USB adapter from [stacksmashing].

As explained in the video below, the adapter is essentially just a Raspberry Pi Pico paired with some level shifters so that it can talk to the Game Boy’s link port. That said, the custom PCB does implement some very clever edge connectors that let you plug it right into the Link Cable for the original “brick” Game Boy as well as the later Color and Advance variants. This keeps you from having to cut up a Link Cable just to get a male end, which is what [stacksmashing] had to do during the prototyping phase.

The DIY breadboard approach works as well.

Of course, the hardware is only one half of the equation. There’s also an open source software stack which includes a Python server and WebUSB frontend that handles communicating with the Game Boy and connecting players. While the original game only supported a two person head-to-head mode, the relatively simplistic nature of the multiplayer gameplay allowed [stacksmashing] to expand that to an arbitrary number of players with his code. The core rules haven’t changed, and each client Game Boy still thinks it’s in a two player match, but the web interface will show the progress of other players and who ends up on top at the end.

To be clear, this isn’t some transparent Link Cable to TCP/IP solution. While something like that could potentially be possible with the hardware, as of right now, the software [stacksmashing] has put together only works for Tetris. So if you want to battle Pokemon over the net, you’ll have to do your own reverse engineering (or at least wait for somebody else to inevitably do it).

The Link Cable port on the Game Boy, especially on the later versions of the hardware, is a surprisingly versatile interface capable of much more than just multiplayer gaming. While we’re certainly keen to see [stacksmashing] develop this project farther, we’re equally excited to see the non-gaming applications of such an easy to use computer interface for the iconic handheld.

Continue reading Tetris For Game Boy Gets Online Multiplayer”

Mining Bitcoin On The Nintendo Game Boy

Mining cryptocurrency is a power intensive business, with big operations hoarding ASIC rigs and high-end GPUs in an endless quest for world domination money. The Bitcoin-mining Game Boy from [stacksmashing] is one of them. (Video, embedded below.)

The hack is relatively straightforward. The Game Boy is hooked up to a PC via a Raspberry Pi Pico and a level shifter to handle the different voltage levels. The Game Boy runs custom software off a flash cart, which runs the SHA hash algorithm on incoming data from the PC and reports results back to the PC which communicates with the Bitcoin network.

[stacksmashing] does a great job of explaining the project, covering everything from the Game Boy’s link port protocol to the finer points of the Bitcoin algorithm in explicit detail. For the technically experienced, everything you need to know to recreate the project is there. While the Game Boy manages just 0.8 hashes per second, trillions of times slower than cutting edge hardware, the project nonetheless is amusing and educational, so take that into consideration before firing off hot takes in the comments below. If you’re really interested in the underlying maths, you can try crunching Bitcoin hashes with pen and paper.

Continue reading “Mining Bitcoin On The Nintendo Game Boy”

Game Boy Replica Built In Brass

Nintendo’s Game Boy is legendary for being the meat in the handheld gaming revolution, as well as being nigh-on indestructible whether in the custody of children or soldiers in the Gulf War. However, [Jiri] decided to see if he could whip up a tribute of his own, in brass instead of plastic.

The hardware is based on the Odroid GO emulator firmware for the ESP32, running on a 2.2″ color TFT screen. It’s a great base for a custom build, which avoids gutting any precious classic hardware. It’s then assembled behind front plate milled out of brass, with delicate point-to-point brass wires giving it an artistic circuit sculpture look. The brass did prove difficult to work with at times, acting as a heat sink which prevented easy soldering of the standoffs in place. To get around this, [Jiri] used a hotplate to heat the plate from below, keeping it warm enough so that a hand iron could do the job.

The final result is a fun Game Boy emulator in a stylish case – though one you shouldn’t throw in a back pack lest it short out the exposed conductors. It would make a great gift for any lifelong Nintendo fan. [Jiri] is no strange to circuit sculpture, as we well know – we’ve featured his tools and methods before. Video after the break.

Continue reading “Game Boy Replica Built In Brass”

The Game Boy Camera, Or: How I Learned To Stop Worrying And Love The Pixels

Never underestimate the power of nostalgia. In an age when there are more megapixels stuffed in the sensor of a smartphone camera than the average computer display can even represent, why would jagged images from a 20-year-old grayscale camera with pixels numbering in the thousands still grab attention? Maybe what’s old is new again, and the coolness factor of novelty is something that can’t be quantified.

The surprise I had last Monday when I saw my Twitter notifications is maybe only second to the feeling I had when I was invited to become a Hackaday contributor. I’d made a very simple web app which mimics a Game Boy Camera using the camera from your phone or desktop, and it got picked up by people so much that I’m amazed my web host is still holding. Let’s look at why something seemingly so simple gained so much traction.

Continue reading “The Game Boy Camera, Or: How I Learned To Stop Worrying And Love The Pixels”

Game Boy Plays Forever

For those of us old enough to experience it first hand, the original Game Boy was pretty incredible, but did have one major downside: battery consumption. In the 90s rechargeable batteries weren’t common, which led to most of us playing our handhelds beside power outlets. Some modern takes on the classic Game Boy address these concerns with modern hardware, but this group from the Delft University of Technology and Northwestern has created a Game Boy clone that doesn’t need any batteries at all, even though it can play games indefinitely.

This build was a proof-of-concept for something called “intermittent computing” which allows a computer to remain in a state of processing limbo until it gets enough energy to perform the next computation. The Game Boy clone, fully compatible with the original Game Boy hardware, is equipped with many tiny solar panels which can harvest energy and is able to halt itself and store its state in nonvolatile memory if it detects that there isn’t enough energy available to continue. This means that Super Mario Land isn’t exactly playable, but other games that aren’t as action-packed can be enjoyed with very little impact in gameplay.

The researchers note that it’ll be a long time before their energy-aware platform becomes commonplace in devices and replaces batteries, but they do think that internet-connected devices that don’t need to be constantly running or powered up would be a good start. There are already some low-powered options available that can keep their displays active when everything else is off, so hopefully we will see even more energy-efficient options in the near future.

Thanks to [Sascho] for the tip!

Continue reading “Game Boy Plays Forever”

The Game Boy As A Midi Synthesiser

In the world of chiptune music there are many platforms to choose from, each with their own special flavour tot heir sound. The Game Boy has a particular following, but it differs from some of its contemporary platforms in having a custom sound chip built into the same silicon as its processor. You can’t crank open a Game Boy and lift out the sound chip for your own synth project, instead you must talk to it through the Game Boy’s Z80 processor. This is something [Adil Soubki] knows well, as he’s completed a project that turns the handheld console into a MIDI synthesiser.

A Game Boy was designed to play games and not as a developer’s toy, so it doesn’t exactly roll out the red carpet for the hacker. He’s got under the console’s skin by mapping a section of its memory address map to the pins on a Teensy microcontroller board, and running some Game Boy code that reads the vaues there and uses them to configure the sound hardware. The Teensy handles the translation between MIDI and these byte values, turning the whole into a MIDI synthesiser. It’s a succesful technique, as can be seen in the video below the break. Best of all, the code is available, so you can have a go for yourself.

We’ve featured Game Boy synths before here at Hackaday, but usually they have been of the more conventional variety.

Continue reading “The Game Boy As A Midi Synthesiser”

Comparing Bare Silicon On Two Game Boy Audio Chips

We always look forward to a new blog post by [Ken Shirriff] and this latest one didn’t cure us of that. His topic this time? Comparing two Game Boy audio chips. People have noticed before that the Game Boy Color sounds very different than a classic Game Boy, and he wanted to find out why. If you know his work, you won’t be surprised to find out the comparison included stripping the die out of the IC packaging.

[Ken’s] explanation of how transistors, resistors, and capacitors appear on the die are helpfully illustrated with photomicrographs. He points out how resistors are notoriously hard to build accurately on a production IC. Many differences can affect the absolute value, so designs try not to count on exact values or, if they do, resort to things like laser trimming or other tricks.

Capacitors, however, are different. The exact value of a capacitor may be hard to guess beforehand, but the ratio of two or more capacitor values on the same chip will be very precise. This is because the dielectric — the oxide layer of the chip — will be very uniform and the photographic process controls the planar area of the capacitor plates with great precision.

We’ve decapsulated chips before, and we have to say that if you are just starting to look at chips at the die level, these big chips with bipolar transistors are much easier to deal with than the fine and dense geometries you’d find even in something like a CPU from the 1980s.

We always enjoy checking in with [Ken]. Sometime’s he’s taking apart nuclear missiles. Sometimes he is repairing an old computer. But it is always interesting.