Hackaday Links Column Banner

Hackaday Links: September 28, 2025

In today’s “News from the Dystopia” segment, we have a story about fighting retail theft with drones. It centers on Flock Safety, a company that provides surveillance technologies, including UAVs, license plate readers, and gunshot location systems, to law enforcement agencies. Their flagship Aerodome product is a rooftop-mounted dock for a UAV that gets dispatched to a call for service and acts as an eye-in-the-sky until units can arrive on scene. Neat idea and all, and while we can see the utility of such a system in a first responder situation, the company is starting to market a similar system to retailers and other private sector industries as a way to contain costs. The retail use case, which the story stresses has not been deployed yet, would be to launch a drone upon a store’s Asset Protection team noticing someone shoplifting. Flock would then remotely pilot the drone, following the alleged thief back to their lair or hideout and coordinating with law enforcement, who then sweep in to make an arrest.

Continue reading “Hackaday Links: September 28, 2025”

Building A (Not Very) Portable Xbox

Modern handheld game consoles are impressive feats of engineering, featuring full fledged computers in near pocket-sized packages. So what happens if you take an original Xbox and sprinkle on some modern electronics and create a handheld? Well, if you’re [James] of James Channel, you end up with this sandwich of PCBs held together with hot glue and duck tape. 

The first order of miniaturization in this Xbox was replacing the hard drive. Because a CompactFlash card uses parallel ATA, that could be a simple drop in replacement. However, the Xbox locks the hard drive to the system requiring a mod chip for the CF card to work. Fortunately, the sacrificial Xbox came with a mod chip installed. After using an arcade machine to flash the card and copy over the contents of the drive, the CF card install was a breeze. 

For the screen and batteries, a portable DVD player that had remained unused since 2006 was repurposed. The battery cells were rather unhappy, but managed to get resurrected with some careful charging. As it turns out, the iPod 30 pin connector inside the portable screen contains an S-Video line. By tapping into that and adding in some power management for the batteries, the Xbox became a pile of PCBs that could maybe be taken places.

Continue reading “Building A (Not Very) Portable Xbox”

A thick, rectangular device with rounded corners is shown, with a small screen in the upper half, above a set of selection buttons.

Further Adventures In Colorimeter Hacking

One of the great things about sharing hacks is that sometimes one person’s work inspires someone else to take it even further. A case in point is [Ivor]’s colorimeter hacking (parts two and three), which started with some relatively simple request spoofing to install non-stock firmware, and expanded from there until he had complete control over the hardware.

After reading [Adam Zeloof]’s work on replacing the firmware on a cosmetics spectrophotometer with general-purpose firmware, [Ivor] bought two of these colorimeters, one as a backup. He started with [Adam]’s method for updating the firmware by altering the request sent to an update server, but was only able to find the serial number from a quality-control unit. This installed the quality-control firmware, which encountered an error on the device. More searching led [Ivor] to another serial number, which gave him the base firmware, and let him dump and compare the cosmetic, quality-control, and base firmwares.

Continue reading “Further Adventures In Colorimeter Hacking”

When Wireless MIDI Has Latency, A Hardwired Solution Saves The Day

[Moby Pixel] wanted to build a fun MIDI controller. In the end, he didn’t build it just once, but twice—with the aim of finding out which microcontroller was most fit for this musical purpose. Pitted against each other? The ESP32 and Raspberry Pi Pico.

The MIDI controller itself is quite fetching. It’s built with a 4 x 4 array of arcade buttons to act as triggers for MIDI notes or events. They’re assembled in a nice wooden case with a lovely graphic wrap on it. The buttons themselves are wired to a microcontroller, which is then responsible for sending MIDI data to other devices.

At this point, the project diverges. Originally, [Moby Pixel] set the device up to work with an ESP32 using wireless MIDI over Bluetooth. However, he soon found a problem. Musical performance is all about timing, and the ESP32 setup was struggling with intermittent latency spikes that would ruin the performance. Enter the Raspberry Pi Pico using MIDI over USB. The hardwired solution eliminated the latency problems and made the controller far more satisfying to use.

There may be solutions to the latency issue with the wireless ESP32 setup, be they in code, hardware configuration, or otherwise. But if you want to play with the most accuracy and the minimum fuss, you’ll probably prefer the hardwired setup.

Latency is a vibe killer in music as we’ve explored previously.

Continue reading “When Wireless MIDI Has Latency, A Hardwired Solution Saves The Day”

Supercon 2023: Building A Portable Vectrex, The Right Way

The Vectrex was a unique console from the early 1980s. Developed by a company you’ve probably never heard of—Smith Engineering—it was put into production by General Consumer Electronics, and later sold by Milton Bradley. It was an outright commercial failure, but it’s remembered for its sharp vector display and oddball form factor.

The Vectrex was intended for tabletop use in a home environment. However, [Jeroen Domburg], also known as [Sprite_tm], decided to set about building a portable version. This wasn’t easy, but that just makes the development process a more interesting story. Thankfully for us, [Sprite_tm] was kind enough to tell the tale at the 2023 Hackaday Supercon.

Continue reading “Supercon 2023: Building A Portable Vectrex, The Right Way”

Meet The Winners Of The 2024 Tiny Games Contest

Over the years, we’ve figured out some pretty sure-fire ways to get hackers and makers motivated for contests. One of the best ways is to put arbitrary limits on different aspects of the project, such as how large it can be or how much power it can consume. Don’t believe us? Then just take a look at the entries of this year’s Tiny Games Contest.

Nearly 80 projects made it across the finish line this time, and our panel of judges have spent the last week or so going over each one to try and narrow it down to a handful of winners. We’ll start things off with the top three projects, each of which will be awarded a $150 gift certificate from our friends at DigiKey.

First: Sub-Surface Simon

While this contest saw a lot of excellent entries, we don’t think anyone is going to be surprised to see this one take the top spot. Earning an exceptionally rare perfect ten score from each of our judges, Sub-Surface Simon from [alnwlsn] grabbed onto the theme of this contest and ran like hell with it. Continue reading “Meet The Winners Of The 2024 Tiny Games Contest”

Comparing X86 And 68000 In An FPGA

[Michael Kohn] started programming on the Motorola 68000 architecture and then, for work reasons, moved over to the Intel x86 and was not exactly pleased by the latter chip’s perceived shortcomings. In the ’80s, the 68000 was a very popular chip, powering everything from personal computers to arcade machines, and looking at its architecture and ease of programming, you can see why this was.

Fast-forward a few years, and [Michael] decided to implement both cores in an FPGA to compare real applications, you know, for science. As an extra bonus, he also compares the performance of a minimal RISC-V implementation on the same hardware, taken from an earlier RISC-V project (which you should also check out !)

Utilizing their ‘Java Grinder’ application (also pretty awesome, especially the retro console support), a simple Mandelbrot fractal generator was used as a non-trivial workload to produce binaries for each architecture, and the result was timed. Unsurprisingly, for CISC architectures, the 68000 and x86 code sizes were practically identical and significantly smaller than the equivalent RISC-V. Still, looking at the execution times, the 68000 beat the x86 hands down, with the newer RISC-V speeding along to take pole position. [Michael] admits that these implementations are minimal, with no pipelining, so they could be sped up a little.

Also, it’s not a totally fair race. As you’ll note from the RISC-V implementation, there was a custom RISC-V instruction implemented to perform the Mandelbrot generator’s iterator. This computes the complex operation Z = Z2 + C, which, as fellow fractal nerds will know, is where a Mandelbrot generator spends nearly all the compute time. We suspect that’s the real reason RISC-V came out on top.

If actual hardware is more your cup of tea, you could build a minimal 68k system pretty easily, provided you can find the chips. The current ubiquitous x86 architecture, as odd as it started out, is here to stay for the foreseeable future, so you’d just better get comfortable with it!

Continue reading “Comparing X86 And 68000 In An FPGA”