Workshop Dust Manifold Spreads The Suction Around

Let’s say you’re doing lots of woodwork now, and you’ve expanded your workshop with a few big tools. You’re probably noticing the sawdust piling up awfully quick. It would be ideal to have some kind of collection system, but you don’t want to buy a shop vac for every tool. This simple manifold from [Well Done Tips] is the perfect solution for you.

It’s a basic rig at heart, but nonetheless a useful one. It consists of a plywood frame with a shuttle that slides back and forth. The suction hose of your shop vac attaches to the shuttle. Meanwhile, the frame has a series of pipes leading to the dust extraction ports of your various tools around the shop. When you power up a tool, simply slide the manifold to the right position, and you’re good to go. Magnets will hold it in place so it doesn’t get jostled around while you work.

It’s a much cheaper solution than buying a huge dust extraction system that can draw from all your tools at once. If you’re just one person, that’s overkill anyway. This solution is just about sized perfectly for small home operators. Give it a go if you’re tired of sweeping up the mess and coughing your lungs out on the regular. Video after the break.

Continue reading “Workshop Dust Manifold Spreads The Suction Around”

A wooden spin coating machine sitting on a desk

Hackaday Prize 2023: Homebrew Spin Coater Makes Micrometer-Thin Layers

One of the great things about the Gearing Up challenge of the 2023 Hackaday Prize is that it lets you discover tools that you don’t encounter every day. We had never given much thought to spin coaters, for example, until we saw [Jeroen Delcour]’s neat homebrew example. As it turns out, spin coating has lots of applications in fields like optics, semiconductor manufacturing or even art projects, where a thin, even layer of a material is required on top of a flat substrate.

The basic idea behind a spin coater is simple: you dispense a few drops of a solution containing the material to be deposited on top of the thing you want to coat, then spin the thing around at a constant speed. The balance between the centripetal force and the liquid’s surface tension ensures that the liquid turns into a film with a consistent thickness all across the substrate. The solvent evaporates, and you’re left with a nice solid layer just a few microns thick.

[Jeroen] built his spin coater out of a brushless DC drone motor, a programmable motor controller, and an ESP32. A rotary pushbutton and an OLED form the user interface, allowing the user to select the speed and spin times. The electronics are all mounted inside a laser-cut wooden enclosure, with the motor sticking out the top, surrounded by a 3D-printed splash guard.

Professional spin coating equipment typically comes with a vacuum chuck to hold the sample in place, but [Jeroen] wasn’t too excited about implementing vacuum systems on a spinning platform and decided instead to simply clamp down the sample using screws in a laser-cut piece of acrylic. This works well enough, and is easy to customize for different sample sizes.

In the video embedded below, [Jeroen] experiments with applying a layer of silicone rubber onto a PCB. Spin coating is an essential step when you’re making your own semiconductor devices such as solar cells, though you might also need more complicated equipment such as an electron microscope. [Jeroen]’s spin coater is at least able to process much larger objects than one we saw earlier.

Continue reading “Hackaday Prize 2023: Homebrew Spin Coater Makes Micrometer-Thin Layers”

Adding Two Axes Makes CNC Router More Than The Sum Of Its Parts

The problem with building automated systems is that it’s hard to look at any problem and not see it in terms of possible automation solutions. Come to think of it, that’s probably less of a bug and more of a feature, but it’s easy to go overboard and automate all the things, which quickly becomes counterproductive in terms of time and money.

If you’re clever, though, a tactical automation solution can increase your process efficiency without breaking the budget. That’s where [Christopher Helmke] seems to have landed with this two-axis add-on fixture for his CNC router. The rig is designed to solve the problem of the manual modification needed to turn off-the-shelf plastic crates into enclosures for his line of modular automation components, aspects of which we’ve featured before. The crates need holes drilled in them and cutouts created in their sides for displays and controls. It’s a job [Christopher] tackled before with a drill and a jigsaw, with predictable results.

To automate the job without going overboard, [Christopher] came up with a tilting turntable that fits under the bed of the CNC router and sticks through a hole in the spoil board. The turntable is a large, 3D printed herringbone gear driven by a stepper and pinion gear. A cheap bearing keeps costs down, while a quartet of planetary gears constrain the otherwise wobbly platform. The turntable also swivels 90 degrees on a herringbone sector gear; together, the setup adds pitch and roll axes to the machine that allow the spindle access to all five sides of the crates.

Was it worth the effort? Judging by the results in the video below, we’d say so, especially given the number of workpieces that [Christopher] has to process. Add in the budget-conscious construction that doesn’t sacrifice precision too much, and this one seems like a real automation win.

Continue reading “Adding Two Axes Makes CNC Router More Than The Sum Of Its Parts”

ChatGPT, The Worst Summer Intern Ever

Back when I used to work in the pharma industry, I had the opportunity to hire summer interns. This was a long time ago, long enough that the fresh-faced college students who applied for the gig are probably now creeping up to retirement age. The idea, as I understood it, was to get someone to help me with my project, which at the time was standing up a distributed data capture system with a large number of nodes all running custom software that I wrote, reporting back to a central server running more of my code. It was more work than I could manage on my own, so management thought they’d take mercy on me and get me some help.

The experience didn’t turn out quite like I expected. The interns were both great kids, very smart, and I learned a lot from them. But two months is a very tight timeframe, and getting them up to speed took up most of that time. Add in the fact that they were expected to do a presentation on their specific project at the end of the summer, and the whole thing ended up being a lot more work for me than if I had just done the whole project myself.

I thought about my brief experience with interns recently with a project I needed a little help on. It’s nothing that hiring anyone would make sense to do, but still, having someone to outsource specific jobs to would be a blessing, especially now that it’s summer and there’s so much else to do. But this is the future, and the expertise and the combined wisdom of the Internet are but a few keystrokes away, right? Well, maybe, but as you’ll see, even the power of large language models has its limit, and trying to loop ChatGPT in as a low-effort summer intern leaves a lot to be desired.

Continue reading “ChatGPT, The Worst Summer Intern Ever”

Serious Vulnerability In European Trunked Radio System

Trunked radio systems can be difficult to wrap one’s mind around, and that’s partially by design. They’re typically used by organizations like police, firefighters, and EMS to share a limited radio frequency band with a much larger number of users than would otherwise be able to operate. From a security standpoint, it also limits the effectiveness of scanners who might not know the control methods the trunked systems are using. But now a global standard for encrypted trunked radio systems, known as TETRA, has recently been found to have major security vulnerabilities, which could result in a lot more headache than disrupted voice communications.

One of the vulnerabilities in this radio system was a known backdoor, which seems to have been protected largely via a “security through obscurity” method. Since the system has been around for about 25 years now, it was only a matter of time before this became public knowledge. The backdoor could allow non-authorized users to snoop on encrypted radio traffic. A second serious vulnerability, unrelated to this backdoor, would further allow listening to encrypted voice traffic. There are a few other minor vulnerabilities recently uncovered by the same security researchers who found these two major ones, and the current recommendation is for anyone using a TETRA system to take a look to see if they are impacted by any of these issues.

Part of the reason this issue is so concerning is that these systems aren’t just used for encrypted voice among first responders. They also are used for critical infrastructure like power grids, rail networks, and other systems controlled by SCADA. This article from Wired goes into much more detail about this vulnerability as well, and we all know that most of our infrastructure already needs significant help when it comes to vulnerabilities to all kinds of failure modes.

Thanks to [cfacer] and [ToniSoft] who sent these tips!

Photo via Wikimedia Commons.

Where Old Files Go To Die

We all lead digital lives, and we work in and on files of one sort or another. And sometimes we get attached to them. That long manifesto you poured your heart into, but nonetheless probably shouldn’t see the light of day? Love letters from former flames? Your first favorite video game that you can’t play any more, but it just sits there eating up drive space?

These are the files that are important enough that they deserve better than just a drag-and-drop into the trashcan. They deserve to be buried with dignity, and that’s just what [Ulf Schleth]’s /death/null offers us – a digital graveyard where our files no longer exist as they were, but still are allowed to linger in memory.

This is an old project, but one that tickled our funny  and poignant bones in equal parts. The pun on /dev/null probably works just a little better if you read both filepaths with a German accent in your head, but the idea translates anyway.

To use it, you simply upload your file and it gets sent to the great trashcan in the sky, but along the way a 4 x 5 matrix of colored blocks is created that represents the file, and it is registered forever in the graveyard, where you can check up on it any time you like. Of course you can’t read it – only 20 RGB triples remain – but you have the digital “gravestone” as commemoration.

Even if you don’t have any loved ones in [Ulf]’s graveyard, you can walk by and see which files others have chosen to remember. Swing on by and pay your respects to notepad.exe.

Beautifully Rebuilding A VR Headset To Add AR Features

[PyottDesign] recently wrapped up a personal project to create himself a custom AR/VR headset that could function as an AR (augmented reality) platform, and make it easier to develop new applications in a headset that could do everything he needed. He succeeded wonderfully, and published a video showcase of the finished project.

Getting a headset with the features he wanted wasn’t possible by buying off the shelf, so he accomplished his goals with a skillful custom repackaging of a Quest 2 VR headset, integrating a Stereolabs Zed Mini stereo camera (aimed at mixed reality applications) and an Ultraleap IR 170 hand tracking module. These hardware modules have tons of software support and are not very big, but when sticking something onto a human face, every millimeter and gram counts.

Continue reading “Beautifully Rebuilding A VR Headset To Add AR Features”