Two hands soldering components on a purpble PCB

Vintage Intel 8080 Runs On A Modern FPGA

If you’re into retro CPUs and don’t shy away from wiring old-school voltages, [Mark]’s latest Intel 8080 build will surely spark your enthusiasm. [Mark] has built a full system board for the venerable 8080A-1, pushing it to run at a slick 3.125 MHz. Remarkable is that he’s done so using a modern Microchip FPGA, without vendor lock-in or proprietary flashing tools. Every step is open source.

Getting this vintage setup to work required more than logical tinkering. Mark’s board supplies the ±5 V and +12 V rails the 8080 demands, plus clock and memory interfacing via the M2GL005-TQG144I FPGA. The design is lean: two-layer PCB, basic level-shifters, and a CM32 micro as USB-to-UART fallback. Not everything went smoothly: incorrect footprints, misrouted gate drivers, thermal runaway in the clock section; but he managed to tackle it.

What sets this project apart is the resurrection of a nearly 50-year-old CPU. It’s also, how thoroughly thought-out the modern bridge is—from bitstream loading via OpenOCD to clever debugging of crystal oscillator drift using a scope. [Mark]’s love of the architecture and attention to low-level detail makes this more than a show-off build.
Continue reading “Vintage Intel 8080 Runs On A Modern FPGA”

C64 on desk with NFC TeensyROM and game token

TeensyROM NFC Game Loading On The C64

When retro computing nostalgia meets modern wireless wizardry, you get a near-magical tap-to-load experience. It’ll turn your Commodore 64 into a console-like system, complete with physical game cards. Inspired by TapTo for MiSTer, this latest hack brings NFC magic to real hardware using the TeensyROM. It’s been out there for a while, but it might not have caught your attention as of yet. Developed by [Sensorium] and showcased by YouTuber [StatMat], this project is a tactile, techie love letter to the past.

At the heart of it is the TeensyROM cartridge, which – thanks to some clever firmware modding – now supports reading NFC tags. These are writable NTag215 cards storing the path to game files on the Teensy’s SD card. Tap a tag to the NFC reader, and the TeensyROM boots your game. No need to fumble with LOAD “*”,8,1. That’s not only cool, it’s convenient – especially for retro demo setups.

What truly sets this apart is the reintroduction of physical tokens. Each game lives on its own custom-designed card, styled after PC Engine HuCards or printed with holographic vinyl. It’s a tangible, collectible gimmick that echoes the golden days of floppies and cartridges – but with 2020s tech underneath. Watch it here.

Continue reading “TeensyROM NFC Game Loading On The C64”

Crookes Tube

Foil Leyden Jar Helps Bring Crookes Tube To Life

It might be too soon to consider the innards of the old CRT monitor at the back of your closet to be something worth putting on display in your home or workshop. For that curio cabinet-worthy appeal, you need to look a bit further back. Say, about 150 years. Yes, that’ll do. A Crookes tube, the original electron beam-forming vacuum tube of glass, invented by Sir William Crookes et al. in the late 19th century, is what you need.

And a Crookes tube is what [Markus Bindhammer] found on AliExpress one day. He felt that piece of historic lab equipment was asking to be put on display in proper fashion. So he set to work crafting a wooden stand for it out of a repurposed candlestick, a nice piece of scrap oak, and some brass feet giving it that antique mad-scientist feel.

After connecting a high voltage generator and switch, the Crookes tube should have been all set, but nothing happened when it was powered up. It turned out that a capacitance issue was preventing the tube from springing to life. Wrapping the cathode end of the tube in aluminum foil, [Markus] formed what is effectively a Leyden jar, and that was the trick that kicked things into action.

As of this writing, there are no longer any Crookes tubes that we could find on AliExpress, so you’ll have to look elsewhere if you’re interested in showing off your own 19th century electron-streaming experiment. Check out the Crookes Radiometer for some more of Sir Williams Crookes’s science inside blown glass.

Continue reading “Foil Leyden Jar Helps Bring Crookes Tube To Life”

Atari ST desktop with Doom shortcut

Running DOOM On An Atari ST

If you grew up with a beige Atari ST on your desk and a faint feeling of being left out once Doom dropped in 1993, brace yourself — the ST strikes back. Thanks to [indyjonas]’s incredible hack, the world now has a working port of DOOM for the Atari STe, and yes — it runs. It’s called STDOOM, and even though it needs a bit of acceleration or emulation to perform, it’s still an astonishing feat of retro-software necromancy.

[indyjonas] did more than just recompile and run: he stripped out chunks of PC-centric code, bent GCC to his will (cheers to Thorsten Otto’s port), and shoehorned Doom into a machine never meant to handle it. That brings us a version that runs on a stock machine with 4MB RAM, in native ST graphics modes, including a dithered 16-colour mode that looks way cooler than it should. The emotional punch? This is a love letter to the 13-year-old Jonas who watched Doom from the sidelines while his ST chugged along faithfully. A lot of us were that kid.

Sound is still missing, and original 8MHz hardware won’t give you fluid gameplay just yet — but hey, it’s a start. Want to dive in deeper? Read [indyjonas]’ thread on X.

The Screamer Is Just Like The Clapper But Even More Annoying

Remember The Clapper? It was a home automation tool (of sorts) that let you turn appliances on and off by clapping. [Kevin O’Connor] has built something rather similar, if more terrifying. It’s called The Screamer.

The build is based around a Sonoff S31 smart switch. [Kevin] selected an off-the-shelf device because he wanted something that was safe to use with mains power out of the box. But specifically, he selected the S31 because it has an ESP8266 inside that’s easy to reprogram with the aid of ESPHome. He ended up hooking up a whole extra ESP32 with an INMP441 microphone over I2S to do the scream detection. This was achieved with a simple algorithm that looked for high amplitude noises with lots of energy in the 1000 – 4000 Hz frequency range. When a scream is detected, it flips a GPIO pin which is detected by the S31, which then toggles the state of the smart switch in turn. Job done.

It’s a simple project that does exactly what it says on the tin. It’s The Screamer! If you’d like to learn more about the original Clapper that inspired this build, we’ve looked at that before, too. Meanwhile, if you’re cooking up your own excuses to scream at the lights and walls in your home, please only notify the tipsline if it has something vaguely to do with electronics or hackery.

A Single Chip Computer For The 8051 Generation

The Intel 8051 series of 8-bit microcontrollers is long-discontinued by its original manufacturer, but lives on as a core included in all manner of more recent chips. It’s easy to understand and program, so it remains a fixture despite much faster replacements appearing.

If you can’t find an original 40-pin DIP don’t worry, because [mit41301] has produced a board in a compatible 40-pin format. It’s called the single chip computer not because such a thing is a novelty in 2025, but because it has no need for the support chips which would have come with the original.

The modern 8051 clone in use is a CH558 or CH559, both chips with far more onboard than the original. The pins are brought out to one side only of the board, because on the original the other side would interface with an external RAM chip. It speaks serial, and can be used through either a USB-to-serial or Bluetooth-to-serial chip. There’s MCS-BASIC for it, so programming should be straightforward.

We can see the attraction of this board even though we reach for much more accomplished modern CPUs by choice. Several decades ago the original 8051 on Intel dev boards was our university teaching microcontoller, so there remains here a soft spot for it. We certainly see other 8051 designs, as for example this Arduino clone.

Diagram showing the structure of the base.

Magic On Your Desk Via MagLev Toy

Magnets aren’t magic, but sometimes you can do things with them to fool the uninitiated — like levitating. [Jonathan Lock] does that with his new maglev desk toy, that looks like at least a level 2 enchantment.

This levitator is USB-powered, and typically draws 1 W to 3 W to levitate masses between 10 g and 500 g. The base can provide 3 V to 5 V inductive power to the levitator to the tune of 10 mA to 50 mA, which is enough for some interesting possibilities, starting with the lights and motors [Jonathan] has tried.

In construction it is much like the commercial units you’ve seen: four permanent magnets that repel another magnet in the levitator. Since such an arrangement is about as stable as balancing a basketball on a piece of spaghetti, the permanent magnets are wrapped in control coils that pull the levitator back to the center on a 1 kHz loop. This is accomplished by way of a hall sensor and an STM32 microcontroller running a PID loop. The custom PCB also has an onboard ESP32, but it’s used as a very overpowered USB/UART converter to talk to the STM32 for tuning in the current firmware.

If you think one of these would be nice to have on your desk, check it out on [Jonathan]’s GitLab. It’s all there, from a detailed build guide (with easy-to-follow animated GIF instructions) to CAD files and firmware. Kudos to [Jonathan] for the quality write-up; sometimes documenting is the hardest part of a project, and it’s worth acknowledging that as well as the technical aspects.

We’ve written about magnetic levitation before, but it doesn’t always go as well as this project. Other times, it very much does. There are also other ways to accomplish the same feat, some of which can lift quite a bit more.