The Back And Forth Of Windshield Wipers And Patent Lawsuits

Who among us hasn’t dreamed of having some brainstorm idea, prototyping it, and then have some huge company put it into worldwide production? The problem is, that’s not really as easy as it sounds in most cases. Take the case of Robert Kearns. Never heard of him? You use the result of one of his patents pretty often; Kearns invented the intermittent windshield wiper.

If he had sold the patent to one of the big carmakers, this would be a short article. Not that he didn’t try. But it didn’t go very well and while, in the end, he prevailed, it was a very expensive victory.

Continue reading “The Back And Forth Of Windshield Wipers And Patent Lawsuits”

How Can Heavy Metal Fly?

Scientists found a surprising amount of lead in a glacier. They were studying atmospheric pollution by sampling ice cores taken from Alpine glaciers. The surprising part is that they found more lead in strata from the late 13th century than they had in those deposited at the height of the Industrial Revolution. Surely mediaeval times were supposed to be more about knights in shining armour than dark satanic mills, what on earth was going on? Why was the lead industry in overdrive in an age when a wooden water wheel represented high technology?

The answer lies in the lead smelting methods used a thousand miles away from that glacier, and in the martyrdom of a mediaeval saint.

Continue reading “How Can Heavy Metal Fly?”

Retrotechtacular: Mobile Phones 1940s Style

We think of the mobile phone — well, what we would call a cell phone — as something fairly modern. Many of us can still remember when using a ham radio phone patch from your parked car would have people staring and murmuring. But it turns out in the late 1940s, Bell Telephone offered Mobile Telephone Service (MTS). It was expensive and didn’t work as well as what we have now, but it did let you make or receive calls from your automobile. After the break, you can see a promotional film about MTS.

The service rolled out in St. Louis in the middle of 1946. The 80-pound radios went in the trunk with a remote handset wired to the dashboard. At first, there were only 3 channels but later Bell added 29 more to keep up with demand. An operator connected incoming and outbound calls and if three other people were using their mobile phones, you were out of luck.

Continue reading “Retrotechtacular: Mobile Phones 1940s Style”

Raising The Titanic’s Radio Room

For some reason, of all the ships that have sailed the oceans, it’s the unlucky ones that capture our imagination. Few ships have been as unlucky as the RMS Titanic, sinking as she did on the night of April 15, 1912 after raking across an iceberg on her maiden voyage, and no ship has grabbed as much popular attention as she has.

During her brief life, Titanic was not only the most elegant ship afloat but also the most technologically advanced. She boasted the latest in propulsion and navigation technology and an innovation that had only recently available: a Marconi wireless room, used both for ship-to-shore and ship-to-ship communications.

The radio room of the Titanic landed on the ocean floor with the bow section of the great vessel. The 2.5-mile slow-motion free fall destroyed the structure of the room, but the gear survived relatively intact. And now, more than a century later, there’s an effort afoot to salvage that gear, with an eye toward perhaps restoring it to working condition. It’s a controversial plan, of course, but it is technologically intriguing, and it’s worth taking a look at what’s down there and why we should even bother after all these years.

Continue reading “Raising The Titanic’s Radio Room”

Project Rubicon: The NSA Secretly Sold Flawed Encryption For Decades

There have been a few moments in the past few years, when a conspiracy theory is suddenly demonstrated to be based in fact. Once upon a time, it was an absurd suggestion that the NSA had data taps in AT&T buildings across the country. Just like Snowden’s revelations confirmed those conspiracy theories, a news in February confirmed some theories about Crypto AG, a Swiss cryptography vendor.

The whole story reads like a cold-war era spy thriller, and like many of those novels, it all starts with World War II. As a result of a family investment, Boris Hagelin found himself at the helm of Aktiebolaget Cryptograph, later renamed to Crypto AG (1952), a Swedish company that built and sold cipher machines that competed with the famous Enigma machine. At the start of the war, Hagelin decided that Sweden was not the place to be, and moved to the United States. This was a fortuitous move, as it allowed Hagelin to market his company’s C-38 cipher machine to the US military. That device was designated the M-209 by the army, and became the standard in-the-field encryption machine.

Continue reading “Project Rubicon: The NSA Secretly Sold Flawed Encryption For Decades”

Recording Video In The Era Of CRTs: The Video Camera Tube

We have all watched videos of concerts and events dating back to the 1950s, but probably never really wondered how this was done. After all, recording moving images on film had been done since the late 19th century. Surely this is how it continued to be done until the invention of CCD image sensors in the 1980s? Nope.

Although film was still commonly used into the 1980s, with movies and even entire television series such as Star Trek: The Next Generation being recorded on film, the main weakness of film is the need to move the physical film around. Imagine the live video feed from the Moon in 1969 if only film-based video recorders had been a thing.

Let’s look at the video camera tube: the almost forgotten technology that enabled the broadcasting industry. Continue reading “Recording Video In The Era Of CRTs: The Video Camera Tube”

The TMS1000: The First Commercially Available Microcontroller

We use a microcontroller without a second thought, in applications where once we might have resorted to a brace of 74 logic chips. But how many of us have spared a thought for how the microcontroller evolved? It’s time to go back a few decades to look at the first commercially available microcontroller, the Texas Instruments TMS1000.

Imagine A World Without Microcontrollers

The Texas Instruments Speak And Spell from 1978 was a typical use for the TMS1000.
The Texas Instruments Speak & Spell from 1978 was a typical use for the TMS1000. FozzTexx (CC-SA 4.0)

It’s fair to say that without microcontrollers, many of the projects we feature on Hackaday would never be made. Those of us who remember the days before widely available and easy-to-program microcontrollers will tell you that computer control of a small hardware project was certainly possible, but instead of dropping in a single chip it would have involved constructing an entire computer system. I remember Z80 systems on stripboard, with the Z80 itself alongside an EPROM, RAM chips, 74-series decoder logic, and peripheral chips such as the 6402 UART or the 8255 I/O port. Flashing an LED or keeping an eye on a microswitch or two became a major undertaking in both construction and cost, so we’d only go to those lengths if the application really demanded it. This changed for me in the early 1990s when the first affordable microcontrollers with on-board EEPROM came to market, but by then these chips had already been with us for a couple of decades.

It seems strange to modern ears, but for an engineer around 1970 a desktop calculator was a more exciting prospect than a desktop computer. Yet many of the first microcomputers were designed with calculators in mind, as was for example the Intel 4004. Calculator manufacturers each drove advances in processor silicon, and at Texas Instruments this led to the first all-in-one single-chip microcontrollers being developed in 1971 as pre-programmed CPUs designed to provide a calculator on a chip. It would take a few more years until 1974 before they produced the TMS1000, a single-chip microcontroller intended for general purpose use, and the first such part to go on sale. Continue reading “The TMS1000: The First Commercially Available Microcontroller”