Ask Hackaday: Is Our Power Grid Smart Enough To Know When There’s No Power?

Just to intensify the feeling of impending zombie apocalypse of the COVID-19 lockdown in the British countryside where I live, we had a power cut. It’s not an uncommon occurrence here at the end of a long rural power distribution network, and being prepared for a power outage is something I wrote about a few years ago. But this one was a bit larger than normal and took out much more than just our village. I feel very sorry for whichever farmer in another village managed to collide with an 11kV distribution pole.

What pops to mind for today’s article is the topic of outage monitoring. When plunged into darkness we all wonder if the power company knows about it. The most common reaction must be: “of course the power company knows the power is out, they’re the ones making it!”. But this can’t be the case as for decades, public service announcements have urge us to report power cuts right away.

In our very modern age, will the grid become smart enough to know when, and perhaps more importantly where, there are power cuts? Let’s check some background before throwing the question to you in the comments below.

Continue reading “Ask Hackaday: Is Our Power Grid Smart Enough To Know When There’s No Power?”

Gigatron Hack Chat

Join us on Wednesday, June 24 at noon Pacific for the Gigatron Hack Chat with Walter Belgers!

There was a time when if you wanted a computer, you had to build it. And not by ordering parts from Amazon and plugging everything together in a case — you had to buy chips, solder or wire-wrap everything, and tinker endlessly. The process was slow, painful, and expensive, but in the end, you had a completely unique machine that you knew inside out because you put every bit of it together.

In some ways, it’s good that those days are gone. Being able to throw a cheap, standardized commodity PC at a problem is incredibly powerful, but that machine will have all the charm of a rubber doorstop and no soul at all. Luckily for those looking to get back a little of the early days of the computer revolution or those that missed them entirely, there are alternatives like the Gigatron. Billed as a “minimalistic retro computer,” the Gigatron is a kit that takes the builder back even further in time than the early computer revolution since it lacks a microprocessor. All the logic of the 8-bit computer is built up from discrete 7400-series TTL chips.

The Gigatron is the brainchild of Marcel van Kervinck and Walter Belgers. Tragically, Marcel recently passed away, but Walter is carrying the Gigatron torch forward and leading a thriving community of TTL-computer aficionados as they extend and enhance what their little home-built machines can do. Walter will stop by the Hack Chat to talk all things Gigatron, and answer your questions about how this improbably popular machine came to be.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, June 24 at 12:00 PM Pacific time. If time zones have you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.
Continue reading “Gigatron Hack Chat”

Teardown: Wonder Bible

Even the most secular among us can understand why somebody would want to have a digital version of the Bible. If you’re the sort of person who takes solace in reading from the “Good Book”, you’d probably like the ability to do so wherever and whenever possible. But as it so happens, a large number of people who would be interested in a more conveniently transportable version of the Bible may not have the technological wherewithal to operate a Kindle and download a copy.

Which is precisely the idea behind the Wonder Bible, a pocket-sized electronic device that allows the user to listen to the Bible read aloud at the press of a button. Its conservative design, high-contrast LED display, and large buttons makes it easy to operate even by users with limited eyesight or dexterity.

The commercial for the Wonder Bible shows people all of all ages using the device, but it’s not very difficult to read between the lines and see who the gadget is really aimed for. We catch a glimpse of a young businessman tucking a Wonder Bible into the center console of his expensive sports car, but in reality, the scenes of a retiree sitting pensively in her living room are far closer to the mark.

In truth, the functionality of the Wonder Bible could easily be replicated with a smartphone application. It would arguably even be an improvement by most standards. But not everyone is willing or able to go that route, which creates a market for an affordable stand-alone device. Is that market large enough to put a lot of expense and engineering time into the product? Let’s crack open one of these holy rolling personal companions and find out.

Continue reading “Teardown: Wonder Bible”

Hackaday Links Column Banner

Hackaday Links: June 21, 2020

When Lego introduced its Mindstorms line in 1998, in a lot of ways it was like a gateway drug into the world of STEM, even though that term wouldn’t be invented for another couple of years. Children and the obsolete children who begat them drooled over the possibility of combining the Lego building system with motors, sensors, and a real computer that was far and away beyond anything that was available at the time. Mindstorms became hugely influential in the early maker scene and was slowly but steadily updated over the decades, culminating with the recently released Mindstorms Robot Inventor kit. In the thirteen years since the last release, a lot has changed in the market, and we Hackaday scribes had a discussion this week about the continued relevancy of Mindstorms in a time when cheap servos, microcontrollers, and a bewildering array of sensors can be had for pennies. We wonder what the readers think: is a kit that burns a $360 hole in your pocket still worth it? Sound off below.

Are you looking for a way to productively fill some spare time? Plenty of people are these days, and Hackaday has quite a deal for them: Hackaday U! This series of online courses will get you up to speed on a wide range of topics, starting tomorrow with Matthew Alt’s course on reverse engineering with Ghidra. Classes meet online once a week for four weeks, with virtual office hours to help you master the topic. Beside reverse engineering, you can learn about KiCad and FreeCad, quantum computing, real-time processing of audio and sensor data, and later in the year, basic circuit theory. We’ve got other courses lined up to fill out the year, but don’t wait — sign up now! Oh, and the best part? It’s on a pay-as-you-wish basis, with all proceeds going to charity. Get smarter, help others while doing it — what’s not to love about that?

Speaking of virtual learning, the GNU Radio Conference will be moving online for its 10th anniversary year. And while it’s good news that this and other cons have been able to retool and continue their mission of educating and growing this community, it’s still a bummer that there won’t be a chance to network and participate in all the fun events such cons offer. Or perhaps there will — it seems like the Wireless Capture the Flag (CTF) event is still going to happen. Billed as “an immersive plot-driven … competition featuring the GNU Radio framework and many other open-source tools, satellite communications, cryptography, and surreal global landscapes,” it certainly sounds like fun. We’d love to find out exactly how this CTF competition will work.

Everyone needs a way to unwind, and sometimes the best way to do that is to throw yourself into a project of such intricacy and delicate work that you’re forced into an almost meditative state by it. We’ve seen beautiful examples of that with the wonderful circuit sculptures of Mohit Bhoite and Jiří Praus, but here’s something that almost defies belief: a painstakingly detailed diorama of a vintage IBM data center. Created by the aptly named [minatua], each piece of this sculpture is a work of art in its own right and represents the “big iron” of the 1400 series of computers from the early 1960s. The level of detail is phenomenal — the green and white striped fanfold paper coming out of the 1403 line printer has tiny characters printed on it, and on the 729 tape drives, the reels spin and the lights flash. It’s incredible, all the more so because there don’t appear to be any 3D-printed parts — everything is scratch built from raw materials. Check it out.

As you can imagine, the Hackaday tip line attracts a fair number of ideas of the scientifically marginal variety. Although we’re not too fond of spammers, we try to be kind to everyone who bothers to send us a tip, but with a skeptical eye when terms like “free energy” come across. Still, we found this video touting to Nikola Tesla’s free energy secrets worth passing on. It’s just how we roll.

And finally, aside from being the first full day of summer, today is Father’s Day. We just want to say Happy Father’s Day to all the dads out there, both those that inspired and guided us as we were growing up, and those who are currently passing the torch to the next generation. It’s not easy to do sometimes, but tackling a project with a kid is immensely important work, and hats off to all the dads who make the time for it.

 

Seeing Code: The Widescreen Rant

A couple of weeks ago, Linus Torvalds laid down the law, in a particularly Linusesque sort of way. In a software community where tabs vs. spaces can start religious wars, saying that 80-character-wide code was obsolete was, to some, utter heresy. For more background on how we got here, read [Sven Gregori]’s history piece on Hackaday, and you’ll learn that sliced bread and the 80-character IBM punch card both made their debut in July, 1928. But I digress.

When I look at a codebase, I like to see its structure, and I’m not alone. That’s one of the reasons for the Linux Kernel style guide’s ridiculously wide 8-character tabs. Combined with a trend for variable names becoming more and more descriptive, which I take to be a good thing, and monitors’ aspect ratios growing seemingly without end, which I don’t, the 80-column width seems like a relic from the long-gone era of the VT-220.

Hazeltine TerminalIn Linus’ missive, we learn that he runs terminals at 100 x 50, and frequently drags them out to a screen-filling 142 x 76. (Amateur! I write this to you now on 187 x 48.) When you’re running this wide, it doesn’t make any sense to line-wrap argument lists, even if you’re using Hungarian notation.

And yet, change is painful. I’ve had to re-format code to meet 73-column restrictions for a book, only to discover that my inline comments were too verbose. Removing even an artificial restriction like the 80-column limit will have real effects. I write longer paragraphs, for instance, on a wider screen.

I see a few good things to come out of this, though. If single thoughts can be expressed on single lines, it makes the shape of the code better reflect its function. Getting rid of pointless wrapping takes up less vertical space, which is at a premium on today’s cinematic monitors. And if it makes inline comments better (I know, another holy war!) or facilitates better variable naming, it will have been worth it.

But any way you slice it, we’re no longer typing on the old 80-character Hazeltine. It’s high time for our coding style and practice to catch up.

Loading Coils, The Heaviside Condition, And Pupin Coils

When we draw schematics, we have the luxury of pretending that wire is free. There are only a few cases where you have to account for the electrical characteristics of wire: when the wire is very long or the frequency on the wire is relatively high.

This became apparent after the first transatlantic cable went into service for telegraph communications. Even though the wire was linear, there was still distortion on the line so severe that dots and dashes would overlap each other. The temporary solution was to limit speeds so slow that operators had trouble sending and receiving at those speeds. How slow? An average character took two minutes to send! That’s not a typo. Two minutes per character. By custom, Morse code assumes a word is five characters, so you could send a word every 10 minutes.

The first transatlantic cable went into service in 1858 and was virtually the moon landing of its day. Frustrated with how slow the communications were, an electrician by the name of Whitehouse decided to crank up the voltage to over 1,000 volts which caused the cable to fail after only three weeks in service. Whoops. Later analysis showed the cable was probably going to fail quickly anyway, but Whitehouse took the public blame.

The wire back then wasn’t as good as what we have today, which led to some of the problems. The insulation was made from multiple coats of a natural latex, gutta percha, which is what dentists use to fill root canals. The jackets were made from tarred hemp and bound with iron wire. There was no way to build an underwater amplifier in 1858, so the cables were just tremendous wires laying on the ocean floor between Newfoundland and Ireland.

Continue reading “Loading Coils, The Heaviside Condition, And Pupin Coils”

Hackaday Podcast 072: Robo Golf Clubs, Plastic Speedboats, No-Juice Flipdots, And Super Soakers

With Editor-in-Chief Mike Szczys on a well-earned vacation, Staff Writer Dan Maloney sits in with Managing Editor Elliot Williams to run us through the week’s most amazing hacks and answer your burning questions. What do you do when you can’t hit a golf ball to save your life? Build a better club, of course, preferably one that does the thinking for you. Why would you overclock a graphing calculator? Why wouldn’t you! Will an origami boat actually float? If you use the right material, it just might. And what’s the fastest way to the hearts of millions of kids? With a Super Soaker and a side-trip through NASA.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 072: Robo Golf Clubs, Plastic Speedboats, No-Juice Flipdots, And Super Soakers”