A mailbox with a solar cell on top

IoT-Enabled Mailbox Lets You Check Your Mail Without Leaving Your House

Whether you live in an apartment downtown or in a detached house in the suburbs, if your mailbox is not built into your home you’ll have to go outside to see if anything’s there. But how do you prevent that dreadful feeling of disappointment when you find your mailbox empty? Well, we’re living in 2022, so today your mailbox is just another Thing to connect to the Internet of Things. And that’s exactly what [fhuable] did when he made a solar powered IoT mailbox.

The basic idea was to equip a mailbox with a camera and have it send over pictures of its contents. An ESP32-Cam module could do just that: with a 1600 x 1200 camera sensor, a 160 MHz CPU and an integrated WiFi adapter, [fhuable] just needed to write an Arduino sketch to have it take a picture every few hours and upload it to an FTP server.

A pile of components making up an IoT Mailbox
The components inside: a solar cell, battery, power controller, LDO and ESP32-Cam module with WiFi antenna

But since running a long cable all the way from the house was not an attractive option, the whole module had to be completely wireless. [fhuable] decided to power it using a single 18650 lithium ion cell, which gets topped up continuously thanks to a 1.5 W solar panel mounted on the roof of the mailbox. The other parts are housed in a 3D-printed enclosure that’s completely sealed to keep out moisture.

The enclosure had to be made from a material that does not degrade in direct sunlight, which is why [fhuable] decided to try ASA filament; this should be very resistant against UV rays, but proved tricky to process. It warped so much during cooling that the only way to get a solid piece out of the printer was to enclose the entire machine in a cardboard box to keep it warm inside.

The end result was worth it though: a neat little extension on the back of the mailbox that should keep sending photos of its insides for as long as the Sun keeps shining. The camera should also give a good indication as to the contents of the mailbox, allowing the user to ignore any junk mail; this is a useful improvement over previous IoT-enabled mailboxes that use proximity sensors, microswitches or optical sensors.

Continue reading “IoT-Enabled Mailbox Lets You Check Your Mail Without Leaving Your House”

A doorblell made from a stepper motor and a hard drive

Minimalistic Doorbell Doesn’t Need An Internet Connection – Or Even A Power Supply

Doorbells are among those everyday objects that started out simple but picked up an immense amount of complexity over the years. What began as a mechanism to bang two pieces of metal together evolved into all kinds of wired and wireless electric bells, finally culminating in today’s smart doorbells that beam a live video feed to their owners even if they’re half a world away.

But sometimes, less is more. [Low tech obsession] built a doorbell out of spare components that doesn’t require Internet connectivity or even a power supply. But it’s not a purely mechanical device either: the visitor turns a knob mounted on a stepper motor, generating pulses of alternating current. These pulses are then fed into the voice coil of an old hard drive, causing its arm to vibrate and strike a bell, mounted where the platters used to be.

Besides being a great piece of minimalistic design, the doorbell is also a neat demonstration of Faraday’s law of induction. The stepper motor is apparently robust enough to withstand vandalism, although we can imagine that the doorbell’s odd shape might confuse some well-meaning visitors too. If you’re into unusual doorbells, you might want to check out this one made from an old wall phone, as well as this electromechanical contraption.

Continue reading “Minimalistic Doorbell Doesn’t Need An Internet Connection – Or Even A Power Supply”

Making Something Gorgeous From Framing Lumber

Here at Hackaday, we typically cover things that blink, bleep, and occasionally they might even bloop. However, the name of the site is Hackaday. We’re about being clever, reusing things in new ways, and most importantly celebrating interesting projects. While not a traditional project that would grace the front page, we would argue that this nightstand made from framing lumber clearly belongs.

Framing lumber is infamous for being squirrely, weird, and heavily knotted. Most serious furniture makers avoid using the cheap stuff and opt for more expensive harder woods. Here in the US, the big box hardware stores carry cheap fast-grown soft pine that has significant amounts of warp and twist inherent in the wood. The process of getting it straight with right-angle corners is involved and even once it has been cut, the internal stresses inside the wood are released, rendering the board twisted and warped again over time. The timelapse process of planing, jointing, and cutting in the video has an almost therapeutic aspect to it. The results are two wonderful pieces of useful furniture that would look at home in most rooms.

The craftsmanship evident in the build is noteworthy but more impressive is the process of taking cheap and unfit materials and making something beautiful out of them. Perhaps if you’re inspired and decide to make your own nightstand this weekend, you can add some touch-sensitive electronics to it. Video after the break.

Continue reading “Making Something Gorgeous From Framing Lumber”

IoT toilet paper sheet counter

Keep Track Of Toilet Paper Usage With This IoT Roll Holder

Remember the Great Toilet Paper Crisis of 2020? We sure do, and it looks like our old friend [Vije Miller] does as well, while seemingly harboring a somewhat morbid fascination about how much paper every bathroom visitor is consuming. And to that end, we present his IoT toilet sheet tracker.

His 3D printed roll holder has a Hall effect sensor that counts revolutions of the roll and sends it to a NodeMCU. The number of sheets per roll is entered when the roll is changed, so some simple math yields the number of sheets each yank consumes. Or at least a decent estimate — [Vije] admits that there’s some rounding necessary. The best part of the build is the connection to Thingspeak, where sheet usage is plotted and displayed. Go ahead and check it out if you dare; at the time of writing, there was an alarming spike in sheet usage — a sudden need for 68 sheets where the baseline usage is in single digits. We shudder to think what might have precipitated that. The video below is — well, let’s just say there’s a video.

This isn’t the first time we’ve seen bathroom-based projects from [Vije Miller]. A few years back there was an attempt to freshen the air with plasma, and his IoT shower valve controller probably never scalded anyone accidentally.

Continue reading “Keep Track Of Toilet Paper Usage With This IoT Roll Holder”

Remote control PCB next to its shell, with a breadboarded analog switch connected to the remote's onboard microcontroller, soldered to the pins responsible for button reading

Reusing Proprietary Wireless Sockets Without Wireless Hacking

Bending various proprietary devices to our will is a hacker’s rite of passage. When it comes to proprietary wall sockets, we’d often reverse-engineer and emulate their protocol – but you can absolutely take a shortcut and, like [oaox], spoof the button presses on the original remote! Buttons on such remotes tend to be multiplexed and read as a key matrix (provided there’s more than four of them), so you can’t just pull one of the pads to ground and expect to not confuse the microcontroller inside the remote. While reading a key matrix, the controller will typically drive rows one-by-one and read column states, and a row or column driven externally will result in the code perceiving an entire group of keys as “pressed” – however, a digitally-driven “switch” doesn’t have this issue!

One way to achieve this would be to use a transistor, but [oaox] played it safe and went for a 4066 analog multiplexer, which has a higher chance of working with any remote no matter the button configuration, for instance, even when the buttons are wired as part of a resistor network. As a bonus, the remote will still work, and you will still be able to use its buttons for the original purpose – as long as you keep your wiring job neat! When compared to reverse-engineering the protocol and using a wireless transmitter, this also has the benefit of being able to consistently work with even non-realtime devices like Raspberry Pi, and other devices that run an OS and aren’t able to guarantee consistent operation when driving a cheap GPIO-operated RF transmitter.

In the past, we’ve seen people trying to tackle this exact issue, resorting to RF protocol hacking in the end. We’ve talked about analog multiplexers and switches in the past, if you’d like figure out more ways to apply them to solve your hacking problems! Taking projects like these as your starting point, it’s not too far until you’re able to replace the drift-y joysticks on your Nintendo Switch with touchpads!

Ray's panels on the wall - circles of different sizes (from 60 to 15cm in diameter) covered by fabric of different shades, their arrangement vaguely resembling a cloud.

DIY Acoustic Panels Or Modern Artwork? Can’t Tell

The acoustic properties of a room have a surprising impact when you want to use a microphone. [RayP24]’s son was trying to make his bedroom into a better recording studio, and for [Ray], that turned into an artfully-executed wall panel project. Fortunately, the process is documented so we all can learn from it. When it comes to acoustics, you can often get a whole lot of improvement from surprisingly few changes. And, as this project demonstrates, you can make it look like a decorative piece to boot.

When arranged and placed on the wall, these panels look like an art piece, a decoration you could get from a somewhat fancy store. If you show them to someone, they might not believe that they also serve as a functioning home acoustics improvement, dampening the sound quite well for audio recording needs. The panels are built out of individual circles, cut out in a way that uses as much of a 3/16″ (5mm) plywood sheet as possible, with hollow circles serving as frames to attach foam-backed fabric. In the Instructables post, [Ray] talks quite a bit about how you can assemble your own and what liberties you can take. There’s also a short video accompanying this project, which you can see after the break. This project is begging to be recreated.

There’s a sizeable amount of hacking-meets-home improvement-meets-home acoustics projects out there, especially lately, when so many people are stuck at home for one reason or another. Just a few months ago, we covered another marvelous “art piece turned reverb killer” project operating by a slightly different principle, and also going a bit more into the theory. Perhaps in a few years, we will no longer have to build panels or structures for our soundproofing needs, as purpose-grown mycelium shapes will do that for us. And once it becomes a question of where to hang your newly-built acoustic panels, this simple guide is a good place to start.

Continue reading “DIY Acoustic Panels Or Modern Artwork? Can’t Tell”

Rainwater Storing Gojo Is A Stroke Of Genius

A traditional Ethiopian Gojo. Image courtesy of easterntravelandtour.com

The traditional Ethiopian Gojo is a circular domed dwelling constructed from a central vertical beam, and a surrounding structure of curved beams made from wood or bamboo. A covering of dried grass and mud completes the outer structure. These buildings are found everywhere in rural areas, due to their ease of construction, and availability of cheap materials. One major problem living in rural areas in developing countries is access to water. Ethiopian inventor [Anteneh Gashaw] knows a thing or two about the practicalities of living in a developing nation, and has come up with an ingenious take on the traditional Gojo. The idea is to replace the outer structure with pipes capable of storing rainwater. A collector plate on the top of the roof directs rain water into the pipes — with some small balancing tubes connecting them at the bottom — distributing the stored water evenly. A tap at the bottom of structure allows the pipes to be emptied on demand. Another interesting point about this design, is that the water adds some extra weight, for free, which gives the structure much improved stability in high winds, increasing safety.

{Anteneh] notes that proper water infrastructure is incredibly expensive, and just simply won’t happen. Well digging, installation of underground water tanks, and other such stop gap measures are great, but still need significant investment, and he believes that his modified Gojo idea will help reduce the problem of storing water during the rainy season, and reduce the pressure on centralised wells and other such community-orientated solutions. What’s more, it should be cheap. We shall watch with interest where this goes.

We’ve seen a few hacks from Africa nations, not many, just a few, but they are interesting ones. Like this DIY Helicopter that didn’t quite get to fly, and this e-waste 3D printer. We’ll keep our eye peeled for more!