FDA Approves Ventilator Designed By NASA’s Jet Propulsion Laboratory

Yesterday NASA’s Jet Propulsion Laboratory announced that their ventilator design has received Emergency Use Authorization from the US Food and Drug Administration. This paves the way for the design to be manufactured for use in the treatment of COVID-19 patients.

JPL, which is tightly partnered with the California Institute of Technology, designed the ventilator for rapid manufacturing to meet the current need for respiratory tools made scarce by the pandemic. The design process took only 37 days and was submitted for FDA approval around April 23rd. They call it VITAL — Ventilator Intervention Technology Accessible Locally — a nod to NASA’s proclivity for acronyms.

Continue reading “FDA Approves Ventilator Designed By NASA’s Jet Propulsion Laboratory”

Maker Therapy Joins The Fight Against COVID-19

We love talking about makerspaces here at Hackaday. We love hearing about the camaraderie, the hacks, the outreach, the innovation, everything. Even more, we love seeing all the varying forms that makerspaces take, either in the hacks they create, the communities they reach out to, and especially their unique environments.

Recently, we came across Maker Therapy, a makerspace right inside a children’s hospital. Now, we’ve heard about hospital makerspaces here on Hackaday before, but what makes Maker Therapy particularly unique is it’s the first hospital makerspace that gives patients the opportunity to innovate right in the pediatric setting.

Inspired by patients and founded by Dr. Gokul Krishnan, Maker Therapy has been around for a few years now but recently popped up on our radar due to their unique position on the frontlines of the COVID-19 pandemic. As a makerspace located right inside a hospital, Maker Therapy is in the unique position to be the hospital’s very own rapid prototyping unit. Using 3D printing and other tools, Maker Therapy is able to make face shields and other important PPE right where they are needed the most.

Here at Hackaday, we salute and give our eternal gratitude to all the health care professionals fighting for our communities. Maybe some of your hacks and other designs could be used by initiatives like Maker Therapy? Until then, stay home and stay safe Hackaday. The only way we’ll get through this is together.

Treating Vertigo But Not The Catchy Pop Song

Benign Paroxysmal Positional Vertigo (BPPV), or simply vertigo, is a condition that creates a sensation of dizziness and spinning, leading to nausea and loss of balance. These symptoms occur due to the dislodging of calcium carbonate crystals in the ear (imagine always feeling dizzy and having salt in your ears, not great). This disease is especially prominent in persons over 65, which is even more problematic considering such populations are especially susceptible to falling and dying from complications from the fall.

To treat vertigo, specialized physicians called vestibular specialists to guide patients through a series of head motions collectively referred to as the Epley maneuver. However, many patients must travel for hours to see a specialist since non-BPPV specialists often feel uncomfortable performing the maneuver.

As a result, Purdue Medical Innovation, Networking, and Design (MIND) developed, Verti-Fix, a solution that will guide non-BPPV specialists through the Epley maneuver using accelerometers and gyroscopes and could also be used by patients at-home as well. By doing so, Verti-Fix is able to provide feedback on how fast or how slowly patients are progressing through the maneuver. Purdue MIND coupled their device with indicator lights to alert physicians if they have performed a specific motion incorrectly and provide detailed feedback on steps performed and steps remaining on an LCD screen. The device is even powered by one of our personal favorite microcontrollers, the ATmega328P. Purdue MIND have detailed their design with schematics and code on Hackster.io giving the community an opportunity to remix, reuse, and reshare.

Purdue MIND are already upgrading their prototype to include eye-tracking and wireless capabilities. Additionally, they recently competed in the Rice 360o Design Competition and placed among the Top 20 teams! We’ll be watching to see how they advance their prototype further.

In the meantime, check out out some other at-home monitoring projects on Hackaday.

Enforce Social Distancing With High Voltage

When getting parts together for a one-off project, we often find ourselves with some leftovers on hand. Most of the time these things go in the junk drawer, but [Brad] aka [AtomicZombie] was working on a project which required parts salvaged from several microwave ovens. That left him with enough surplus components to build a social distancing enforcement tool for the modern age; which will deliver a taser-like shock to anyone which violates the new six-foot rule.

The leftover parts in question were built around a high-voltage capacitor, which [Brad] strapped to his back to hold all of the electronics needed for the six-foot electrified hoop. The generator utilizes the output voltage from two magnetrons, but doesn’t start until the operator enters a code on the front control panel, which is about the only safety device on this entire contraption. To get power to the magnetrons a 12 VDC car battery is used with an inverter to get the required input voltage, and towards the end of the video linked below he shows its effectiveness by setting various objects on fire with it.

While this gag project is unlikely to get any actual use, it’s not like any of us around here need an excuse to play with high voltages. [Brad] is also unlikely to need it either; he lives on a secluded 100-acre homestead and has been featured here for some of the projects he built to make his peaceful life a little easier, like a robotic laundry line, mobile chicken coop, and an electric utility tricycle built from an old truck and motorcycle.

Continue reading “Enforce Social Distancing With High Voltage”

A Hoverboard As An Assistive Device

Assistive devices for people with disabilities can make an inestimable difference to their lives, but with a combination of technology, complexity, and often one-off builds for individual needs, they can be eye-wateringly expensive. When the recipient is a young person who may grow out of more than one device as they mature, this cost can be prohibitive. Some way to cut down on the expense is called for, and [Phil Malone] has identified the readily available hoverboard as a possible source of motive power for devices that need it.

Aside from being a children’s toy, hoverboards have been well and truly hacked; we’ve featured them in Hacky Racers, and as hacker camp transport. But this is an application which demands controllability and finesse not needed when careering round a dusty field. He’s taken that work and built upon it to produce a firmware that he calls HUGS, designed to make the hoverboard motors precisely controllable. It’s a departure from the norm in hoverboard hacking, but perhaps it can open up new vistas in the use of these versatile components.

There is much our community can do when it comes to improving access to assistive technologies, and we hope that this project can be one of the success stories. We would however caution every reader to avoid falling into the engineer savior trap.

The Three Shell Mystery Finally Solved!

While we certainly acknowledge the valuable contributions of the open hardware community that help to mitigate the coronavirus crisis, we are also looking forward to the days when people start going back to building other things than 3D-printed face shields, pandemic trackers, and automatic soap dispensers. However, this handwash timer by [Agis Wichert] is a very creative version that also tries to solve the long outstanding mystery of how to use the three seashells. Unfortunately, in contrast to those in the original movie, these three seashells do not replace toilet paper which many people are seemingly so desperate in need of at the moment.

The build is quite simple and requires only a few off-the-shelf components including a Neopixel strip, IR proximity sensor, and an Arduino Nano. The plastic seashells were taken from the classic German “Schleckmuschel” candy, thereby giving the project an extra retro twist. As shown in the video embedded below, the timer works by consecutively dimming the LEDs located under each seashell until the recommended duration of 20 seconds has elapsed which is indicated by shortly flashing all LEDs.

Handwash timer projects do not always have to be visual as this one playing your favorite Spotify tunes proves. What we really would like to see though is someone building a toilet paper dispenser that is triggered by swearwords.

Continue reading “The Three Shell Mystery Finally Solved!”

Google And Apple Reveal Their Coronavirus Contact Tracing Plans: We Kick The Tires

Google and Apple have joined forces to issue a common API that will run on their mobile phone operating systems, enabling applications to track people who you come “into contact” with in order to slow the spread of the COVID-19 pandemic. It’s an extremely tall order to do so in a way that is voluntary, respects personal privacy as much as possible, doesn’t rely on potentially vulnerable centralized services, and doesn’t produce so many false positives that the results are either ignored or create a mass panic. And perhaps much more importantly, it’s got to work.

Slowing the Spread

As I write this, the COVID-19 pandemic seems to be just turning the corner from uncontrolled exponential growth to something that’s potentially more manageable, but it’s not clear that we yet see an end in sight. So far, this has required hundreds of millions of people to go into essentially voluntary quarantine. But that’s a blunt tool. In an ideal world, you could stop the disease globally in a couple weeks if you could somehow test everyone and isolate those who have been exposed to the virus. In the real world, truly comprehensive testing is impossible, and figuring out whom to isolate is extraordinarily difficult due to two factors: COVID-19 has a long incubation period during which it is nonetheless transmissible, and some or even most people don’t know they have it. How can you stop what you can’t see, and even when you can detect it, it’s a week too late?

One promising approach is to isolate those people who’ve been in contact with known cases during the stealth contagion period. To do this is essentially to keep a diary of everyone you’ve been in contact with for the last week or two, and then if you eventually test positive for COVID-19, alert them all so that they can keep from infecting others even before they test positive: track and trace. Doctors can do this by interviewing patients who test positive (this is the “contact tracing” we’ve been hearing so much about), but memory is imperfect. Enter a technological solution. Continue reading “Google And Apple Reveal Their Coronavirus Contact Tracing Plans: We Kick The Tires”